分层图洛谷P5122. Fine Dining G
作者:互联网
今天就completely在划水,mentor也不搭理了
哎
那就做题吧,下午做gre的题,这周六过生日2333
上次有个分层图的题其实一直没想明白,但我现在这题就搞明白了
这题问的是要求是否能吃到艹,我本来想用费用流,但是数据量就死心了
然后看了看是用dij跑的
分层图可以解决图中一些存在着某些不等式关系图
比如这个 有dist(u) + dist(w) <= dist(n) + x
那么整理一下就有 dist(u) + dist(w) - n <= dist(n)
化成了一个数学公式,所以我们先取一遍n到各个点的最短路,那么是NlogN的
然后连边,然后超级原点,向这些有艹剁点进行连边,费用是 dist(u, w) - x, x是费用,然后跑一边看到新的原点n始否能够小于单纯的dist(n)
代码:
#include <bits/stdc++.h> #include <bits/extc++.h> using namespace std; #define limit (2000000 + 5)//防止溢出 #define INF 0x3f3f3f3f #define inf 0x3f3f3f3f3f #define lowbit(i) i&(-i)//一步两步 #define EPS 1e-9 #define FASTIO ios::sync_with_stdio(false);cin.tie(0); #define ff(a) printf("%d\n",a ); #define pi(a,b) pair<a,b> #define rep(i, a, b) for(ll i = a; i <= b ; ++i) #define per(i, a, b) for(ll i = b ; i >= a ; --i) #define MOD 998244353 #define traverse(u) for(int i = head[u]; ~i ; i = edge[i].next) #define FOPEN freopen("C:\\Users\\tiany\\CLionProjects\\akioi\\data.txt", "rt", stdin) #define FOUT freopen("C:\\Users\\tiany\\CLionProjects\\akioi\\dabiao.txt", "wt", stdout) #define debug(x) cout<<x<<endl typedef long long ll; typedef unsigned long long ull; char buf[1<<23],*p1=buf,*p2=buf,obuf[1<<23],*O=obuf; inline ll read(){ #define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++) ll sign = 1, x = 0;char s = getchar(); while(s > '9' || s < '0' ){if(s == '-')sign = -1;s = getchar();} while(s >= '0' && s <= '9'){x = (x << 3) + (x << 1) + s - '0';s = getchar();} return x * sign; #undef getchar }//快读 void print(ll x) { if(x/ 10) print(x / 10); *O++=x % 10+'0'; } void write(ll x, char c = 't') { if(x < 0)putchar('-'),x = -x; print(x); if(!isalpha(c))*O++ = c; fwrite(obuf,O-obuf,1,stdout); O = obuf; } int kase; int n, m,k; int a[limit]; int head[limit], cnt; int dist[limit], vis[limit]; void init(){ cnt = 0; memset(head, -1 , sizeof(head)); memset(dist, INF, sizeof(dist)); memset(vis, 0, sizeof(vis)); } struct node{ int to, w, next; }edge[limit<<1]; void add(int u, int v, int w = 0){ edge[cnt].to = v; edge[cnt].w = w; edge[cnt].next = head[u]; head[u] = cnt++; } struct nod{ int to, w; bool operator<(const nod & rhs)const{ return w > rhs.w; } }; void dijkstra(int vs = 1){ priority_queue<nod>q; q.push({vs,0}); dist[vs] = 0; while(!q.empty()){ nod u = q.top(); q.pop(); vis[u.to] = 1; for(int i = head[u.to] ; ~i ; i = edge[i].next){ int v = edge[i].to, w = edge[i].w; if(vis[v])continue; if(dist[u.to] + w < dist[v]){ dist[v] = dist[u.to] + w; q.push({v, dist[v]}); } } } } void solve(){ n = read(), m = read(), k = read(); init(); struct backup{ int x,y,w; }; vector<backup>v; v.reserve(m); rep(i,1,m){ int x = read(), y = read(), w = read(); add(x,y,w); add(y,x,w); v.push_back({x,y,w}); } dijkstra(n);//求出来n到所有的距离 rep(i,1,n){ a[i] = dist[i]; } int ve = 5e5+1; rep(i,1,k){ int x = read(), t = read(); add(ve , x, dist[x] - t); //add(x,ve,dist[x] - t); } memset(dist, INF, sizeof(dist)); memset(vis, 0,sizeof(vis)); dijkstra(ve); rep(i,1,n - 1){ if(dist[i] <= a[i]) puts("1"); else puts("0"); } } int32_t main() { #ifdef LOCAL FOPEN; //FOUT; #endif //FASTIO //cin>>kase; //while (kase--) solve(); cerr << "Time elapsed: " << 1.0*clock()/CLOCKS_PER_SEC << "s\n"; return 0; }
标签:dist,int,rep,P5122,Dining,edge,read,Fine,define 来源: https://www.cnblogs.com/tiany7/p/14845005.html