pymongo 聚合搜索
作者:互联网
首先保存了二手房交易数据,数据形式:
{ "_id": { "$oid": "60b7389ca70ea7f8e951c7da" }, "price_total": "40", "price_unit": "4498", "trade_date": "2021.05.02", "unit_link": "https://cq.lianjia.com/chengjiao/106107543408.html", "unit_info": "龙凤二村 3室2厅 88.5平米", "price_listing": "挂牌42万", "deal_cycle": "成交周期49天", "citycode": "cq", "city": "重庆", "xiaoqu": { "picUrl": "https://image1.ljcdn.com/hdic-resblock/717251c1-fd6d-484e-8919-60cfe1ea33a4.jpg", "name": "龙凤二村", "buildYear": "1978年", "buildNum": "68栋", "buildType": "板楼/塔板结合", "frameNum": 0, "frameUrl": "https://cq.lianjia.com/xiaoqu/3620030253941210/huxing/", "viewUrl": "https://cq.lianjia.com/xiaoqu/3620030253941210/", "unitPrice": 5311, "sellNum": 47, "rentNum": 5, "sellUrl": "https://cq.lianjia.com/ershoufang/c3620030253941210/", "rentUrl": "https://cq.lianjia.com/zufang/c3620030253941210/", "gonglue": [], "district": "北碚", "street": "城南新区", "on_rent_price": 13.82, "rent_to_sale": 0.00369 }, }
现在要根据‘xiaoqu'中的'district'和'trade_date'来分组,并对每一组计算总数,然后计算小区的平均价格
pipeline=[ {"$unwind": "$xiaoqu"},#要查询数组内部元素,需要先拆开数组 { "$group": { "_id": { 'trade_date':'$trade_date', 'city':'$city', 'district':'$xiaoqu.district'#查询数组内部元素 }, 'count':{'$sum':1},#计数 'unitPrice':{'$avg':'$xiaoqu.unitPrice'}#计算平均数,数据不能是字符串 } }, ] result=[] for col in mycol.aggregate(pipeline): col.update({'unitPrice':round(col['unitPrice'])}) print(col)
结果:
{'_id': {'trade_date': '2021.05.17', 'city': '武汉', 'district': '东西湖'}, 'count': 11, 'unitPrice': 13916} {'_id': {'trade_date': '2021.05.17', 'city': '武汉', 'district': '青山'}, 'count': 2, 'unitPrice': 15073} {'_id': {'trade_date': '2021.05.17', 'city': '武汉', 'district': '江夏'}, 'count': 6, 'unitPrice': 13867} {'_id': {'trade_date': '2021.05.17', 'city': '武汉', 'district': '汉阳'}, 'count': 12, 'unitPrice': 17238} {'_id': {'trade_date': '2021.05.17', 'city': '武汉', 'district': '江汉'}, 'count': 10, 'unitPrice': 21657} {'_id': {'trade_date': '2021.05.17', 'city': '武汉', 'district': '蔡甸'}, 'count': 3, 'unitPrice': 8650} {'_id': {'trade_date': '2021.05.17', 'city': '武汉', 'district': '东湖高新'}, 'count': 27, 'unitPrice': 21799} {'_id': {'trade_date': '2021.05.17', 'city': '武汉', 'district': '硚口'}, 'count': 4, 'unitPrice': 17556} {'_id': {'trade_date': '2021.05.17', 'city': '武汉', 'district': '洪山'}, 'count': 23, 'unitPrice': 18348} {'_id': {'trade_date': '2021.05.17', 'city': '武汉', 'district': '武昌'}, 'count': 17, 'unitPrice': 23702} {'_id': {'trade_date': '2021.05.17', 'city': '武汉', 'district': '江岸'}, 'count': 19, 'unitPrice': 21293} {'_id': {'trade_date': '2021.05.17', 'city': '武汉', 'district': '黄陂'}, 'count': 3, 'unitPrice': 10660} {'_id': {'trade_date': '2021.05.17', 'city': '武汉', 'district': '沌口开发区'}, 'count': 2, 'unitPrice': 17290}
标签:city,聚合,district,pymongo,trade,搜索,date,unitPrice,id 来源: https://www.cnblogs.com/moneymaster/p/14845008.html