sparkShell操作hudi
作者:互联网
使用sparkShell连接hudi
[root@ha1 bin]#spark-shell \
--packages org.apache.hudi:hudi-spark-bundle_2.11:0.5.3,org.apache.spark:spark-avro_2.11:2.4.4,org.apache.avro:avro:1.8.2 \
--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer'
创建表
import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._
// 表名
val tableName = "hudi_trips_cow"
// 基本路径
val basePath = "file:///tmp/hudi_trips_cow"
// 数据类
val dataGen = new DataGenerator
插入数据
// 生成10条打车行程数据
val inserts = convertToStringList(dataGen.generateInserts(10))
// 创建DataFrame,并写入数据
val df = spark.read.json(spark.sparkContext.parallelize(inserts, 2))
// 将DataFrame写入Hudi表中
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
// mode(Overwrite)如果表已经存在,则覆盖并重新创建该表。
mode(Overwrite).
save(basePath)
查询数据
// 将数据文件加载到DataFrame中
val tripsSnapshotDF = spark.
read.
format("hudi").
load(basePath + "/*/*/*/*")
// 创建临时表
tripsSnapshotDF.createOrReplaceTempView("hudi_trips_snapshot")
spark.sql("select fare, begin_lon, begin_lat, ts from hudi_trips_snapshot where fare > 20.0").show()
+------------------+-------------------+-------------------+---+
| fare| begin_lon| begin_lat| ts|
+------------------+-------------------+-------------------+---+
|34.158284716382845|0.46157858450465483| 0.4726905879569653|0.0|
| 43.4923811219014| 0.8779402295427752| 0.6100070562136587|0.0|
| 64.27696295884016| 0.4923479652912024| 0.5731835407930634|0.0|
| 93.56018115236618|0.14285051259466197|0.21624150367601136|0.0|
| 33.92216483948643| 0.9694586417848392| 0.1856488085068272|0.0|
| 66.62084366450246|0.03844104444445928| 0.0750588760043035|0.0|
| 41.06290929046368| 0.8192868687714224| 0.651058505660742|0.0|
| 27.79478688582596| 0.6273212202489661|0.11488393157088261|0.0|
+------------------+-------------------+-------------------+---+
// hudi会新增的_hoodie_commit_time是时间戳字段,里面存储的是摄入时间;_hoodie_partition_path是数据块路径字段。
scala> spark.sql("select _hoodie_commit_time,_hoodie_partition_path from hudi_trips_snapshot").show()
+-------------------+----------------------+
|_hoodie_commit_time|_hoodie_partition_path|
+-------------------+----------------------+
| 20210427222000| americas/united_s...|
| 20210427222000| americas/united_s...|
| 20210427222000| americas/united_s...|
| 20210427222000| americas/united_s...|
| 20210427222000| americas/united_s...|
| 20210427222000| americas/brazil/s...|
| 20210427222000| americas/brazil/s...|
| 20210427222000| americas/brazil/s...|
| 20210427222000| asia/india/chennai|
| 20210427222000| asia/india/chennai|
+-------------------+----------------------+
更新数据
val updates = convertToStringList(dataGen.generateUpdates(10))
val df = spark.read.json(spark.sparkContext.parallelize(updates, 2))
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
// mode(Append)追加数据
mode(Append).
save(basePath)
增量查询
spark.
read.
format("hudi").
load(basePath + "/*/*/*/*").
createOrReplaceTempView("hudi_trips_snapshot")
val commits = spark.sql("select distinct(_hoodie_commit_time) as commitTime from hudi_trips_snapshot order by commitTime").map(k => k.getString(0)).take(50)
val beginTime = commits(commits.length - 2) // 设置增量时间戳范围
// 增量查询
val tripsIncrementalDF = spark.read.format("hudi").
option(QUERY_TYPE_OPT_KEY, QUERY_TYPE_INCREMENTAL_OPT_VAL).
option(BEGIN_INSTANTTIME_OPT_KEY, beginTime).
load(basePath)
// 创建临时表
tripsIncrementalDF.createOrReplaceTempView("hudi_trips_incremental")
spark.sql("select `_hoodie_commit_time`, fare, begin_lon, begin_lat, ts from hudi_trips_incremental where fare > 20.0").show()
时间点查询
val beginTime = "000" // “ 000”表示最早的提交时间
val endTime = commits(commits.length - 2) // 设置增量时间戳范围
//增量查询
val tripsPointInTimeDF = spark.read.format("hudi").
option(QUERY_TYPE_OPT_KEY, QUERY_TYPE_INCREMENTAL_OPT_VAL).
option(BEGIN_INSTANTTIME_OPT_KEY, beginTime).
option(END_INSTANTTIME_OPT_KEY, endTime).
load(basePath)
tripsPointInTimeDF.createOrReplaceTempView("hudi_trips_point_in_time")
spark.sql("select `_hoodie_commit_time`, fare, begin_lon, begin_lat, ts from hudi_trips_point_in_time where fare > 20.0").show()
删除数据
// 获取所有数据
spark.sql("select uuid, partitionpath from hudi_trips_snapshot").count()
// 取出两条要删除的数据
val ds = spark.sql("select uuid, partitionpath from hudi_trips_snapshot").limit(2)
// 删除
val deletes = dataGen.generateDeletes(ds.collectAsList())
val df = spark.read.json(spark.sparkContext.parallelize(deletes, 2))
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(OPERATION_OPT_KEY,"delete").
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Append).
save(basePath)
// 再查询
val roAfterDeleteViewDF = spark.
read.
format("hudi").
load(basePath + "/*/*/*/*")
roAfterDeleteViewDF.registerTempTable("hudi_trips_snapshot")
// 应该返回两条数据
spark.sql("select uuid, partitionpath from hudi_trips_snapshot").count()
标签:OPT,hudi,option,val,sparkShell,操作,spark,trips 来源: https://blog.csdn.net/qq_41106844/article/details/116588467