系统相关
首页 > 系统相关> > 绘制具有多个线程的位图,在Windows和Android中结果不同

绘制具有多个线程的位图,在Windows和Android中结果不同

作者:互联网

我的应用程序创建了Mandelbrot分形的图像.通过计算数据行,将其转换为颜色行,然后将该行复制到位图,可以完成此操作.首先,这是以串行方式完成的,效果很好.现在,我尝试使用多个线程来执行此操作.每个线程都会计算自己的一系列行,例如线程0计算0、4、8、12,…;线程1:1,5,9,…;线程2、2、6、10,…,线程3、3、7 …,在给定的示例中使用了4个线程(FMax_Threads = 4).关键部分(声明为全局)必须防止多个线程同时写入位图.另一个全局变量(Finished_Tasks)用于跟踪写入的行数.一旦等于行数,就完成计算.

相同的代码在Windows下运行良好,并在Android下产生乱码.我之前注意到Windows is somewhat more forgiving to errors than Android.有人知道我到底在做什么错吗?

下面的单元计算线程mandelbrot

  unit Parallel_Mandelbrot;

  interface

  uses System.SysUtils, System.Types, System.UITypes, System.Classes,
       System.Variants, System.SyncObjs, System.Diagnostics, FMX.Types, FMX.Graphics;
  //     Color_Type_Defs;

  const cZoom_Factor = 3.0;
        cMax_Stack   = 100;

  type
     TPrecision = double;

     Trec_xy = record
        xl: TPrecision;
        yl: TPrecision;
        xu: TPrecision;
        yu: TPrecision;
     end; // Record: Trec_xy //

     TStack_xy = array [0..cMax_Stack + 1] of Trec_xy;

     TCompute = class;

     TParallelMandelbrot = class (TObject)
     private
        FBitmap: TBitmap;
        FXSteps: Int32;
        FYSteps: Int32;
        FMax_Iter: Int32;
        FMax_Threads: Int32;
        FColor_Pattern: Int32;
        FStop: boolean;
        FStack: TStack_xy;
        FCurrent_Stack: Int32;

        function  get_threads: Int32;
        procedure set_threads (value: Int32);
        function  get_iterations: Int32;
        procedure set_iterations (value: Int32);

     public
        constructor Create (Bitmap: TBitmap; xsteps, ysteps, max_iter, cp: uInt32);
        destructor  Destroy; override;
        procedure zoom (xc, yc: Int32);
        procedure unzoom;
        procedure reset;
        function compute (iterations: Int32): Int64;

        property Max_Threads: Int32 read get_threads write set_threads;
        property Iterations: Int32 read get_iterations write set_iterations;
        property Color_Pattern: Int32 read FColor_Pattern write FColor_Pattern;
        property Stop: boolean read FStop write FStop;
     end; // Class: ParallelMandelbrot //

     TCompute = class (TThread)
     protected
        FBitmap: TBitmap;
        Fxl: TPrecision;
        Fyl: TPrecision;
        Fxu: TPrecision;
        Fyu: TPrecision;
        FXSteps: Int32;
        FYSteps: Int32;
        FOffset: Int32;
        FIncr: Int32;
        FMax_Iter: uInt32;
        FColor_Pattern: Int32;

     public
        constructor Create (Bitmap: TBitmap; xl, yl, xu, yu: TPrecision; xsteps, ysteps, offset, incr, max_iter, cp: uInt32);
        destructor Destroy; override;
        procedure Execute; override;
        procedure Work;
     end;// TComputer //

  implementation

  var cs: TCriticalSection;
      Tasks_Finished: Int32;

  {*******************************************************************
  *                                                                  *
  * Class: ParallelMandelbrot                                        *
  *                                                                  *
  ********************************************************************}

  constructor TParallelMandelbrot.Create (Bitmap: TBitmap; xsteps, ysteps, max_iter, cp: uInt32);
  begin
     inherited Create;

     FBitmap := Bitmap;
     FCurrent_Stack := 0;
     FStack [FCurrent_Stack].xl := -2.0;
     FStack [FCurrent_Stack].yl := -1.5;
     FStack [FCurrent_Stack].xu := +1.0;
     FStack [FCurrent_Stack].yu := +1.5;

     FXSteps := xsteps;
     FYSteps := ysteps;
     FMax_Iter := max_iter;
     FColor_Pattern := cp;
     FMax_Threads := 1;

  // Create a global critical section
     cs := TCriticalSection.Create;
  end; // Create //

  destructor TParallelMandelbrot.Destroy;
  begin
     cs.Free;

     inherited Destroy;
  end; // Destroy //

  function TParallelMandelbrot.get_threads: Int32;
  begin
     get_threads := FMax_Threads;
  end; // get_threads //

  procedure TParallelMandelbrot.set_threads (value: Int32);
  begin
     FMax_Threads := value;
  end; // set_threads //

  function TParallelMandelbrot.get_iterations: Int32;
  begin
     get_iterations := FMax_Iter;
  end; // set_iterations //

  procedure TParallelMandelbrot.set_iterations (value: Int32);
  begin
     FMax_Iter := value;
  end; // set_iterations //

  procedure TParallelMandelbrot.zoom (xc, yc: Int32);
  // Zooms factor zoom_factor into the fractal
  var rect: TRectF;
      xfraction, yfraction: TPrecision;
      xcenter, ycenter: TPrecision;
      xrange, yrange: TPrecision;
      xzoom, yzoom: TPrecision;
      offset: TPrecision;
  begin
     if FCurrent_Stack < cMax_Stack - 1 then
     begin
        xrange := FStack [FCurrent_Stack].xu - FStack [FCurrent_Stack].xl;
        yrange := FStack [FCurrent_Stack].yu - FStack [FCurrent_Stack].yl;
        xfraction := xc / FXsteps;
        yfraction := yc / FYsteps;
        xcenter := FStack [FCurrent_Stack].xl + xfraction * (xrange);
        ycenter := FStack [FCurrent_Stack].yl + yfraction * (yrange);
        xzoom := xrange / cZoom_Factor;
        yzoom := yrange / cZoom_Factor;

        FCurrent_Stack := FCurrent_Stack + 1;
        FStack [FCurrent_Stack].xl := xcenter - xzoom / 2;
        FStack [FCurrent_Stack].xu := xcenter + xzoom / 2;
        FStack [FCurrent_Stack].yl := ycenter - yzoom / 2;
        FStack [FCurrent_Stack].yu := ycenter + yzoom / 2;

  // Draw a dotted rectangle to indicate the area on the bitmap that is zoomed into
        FBitmap.Canvas.BeginScene;
        try
  // Create a rectangle with (Left, Top, Right, Bottom)
           offset := 2 * cZoom_Factor;
           rect := TRectf.Create(xc - FXSteps / offset, yc - FYSteps / offset,
                                 xc + FXSteps / offset, yc + FYSteps / offset);
           FBitmap.Canvas.Stroke.Color := TAlphaColors.Black;
           FBitmap.Canvas.StrokeDash := TStrokeDash.sdDot;
           FBitmap.Canvas.DrawRect(rect, 0, 0, AllCorners, 50);
        finally
           FBitmap.Canvas.EndScene;
        end; // try..finally
     end; // if
  end; // mandel_zoom //

  procedure TParallelMandelbrot.unzoom;
  begin
     if FCurrent_Stack > 0 then
     begin
        FCurrent_Stack := FCurrent_Stack - 1;
     end; // if
  end; // mandel_unzoom //

  procedure TParallelMandelbrot.reset;
  begin
     FCurrent_Stack := 0;
  end; // reset //

  function TParallelMandelbrot.compute (iterations: Int32): Int64;
  var Timer: TStopWatch;
      threads: array of TCompute;
      thread: Int32;
      xs, ys: Int32;
      xl, yl, xu, yu: TPrecision;
  begin
     xl := FStack [FCurrent_Stack].xl;
     yl := FStack [FCurrent_Stack].yl;
     xu := FStack [FCurrent_Stack].xu;
     yu := FStack [FCurrent_Stack].yu;
     xs := FXSteps;
     ys := FYSteps;
     SetLength (threads, FMax_Threads);
     Tasks_Finished := 0; // No tasks finished yet
     Timer.Create;
     Timer.Reset;
     Timer.Start;
     FBitmap.SetSize (FXSteps, FYSteps);
     FBitmap.Canvas.BeginScene; // Tell the canvas we start drawing
     try
  // The threads are created suspended, so they have to be started explicitly
        for thread := 0 to Max_Threads - 1
           do threads [thread] := TCompute.Create (FBitmap, xl, yl, xu, yu, xs, ys, thread, Max_Threads, Iterations, Color_Pattern);
        for thread := 0 to Max_Threads - 1
           do threads [thread].Start;

  // Wait until all threads are ready. Each thread increments Tasks_Finished
  // when one row is computed
        while Tasks_Finished < FYSteps do
        begin
           Sleep (50);
        end; // while
     finally
        Timer.Stop;
        Result := Timer.ElapsedMilliseconds;
        cs.Acquire; // Be absolutely sure all threads left the cirtical section
        try
           FBitmap.Canvas.EndScene; // and tell the canvas we're ready
        finally
           cs.Leave;
        end; // try..finally
     end; // try..finally
  end; // compute //

  {*******************************************************************
  *                                                                  *
  * Class: TCompute                                                  *
  *                                                                  *
  ********************************************************************}

  constructor TCompute.Create (Bitmap: TBitmap; xl, yl, xu, yu: TPrecision; xsteps, ysteps, offset, incr, max_iter, cp: uInt32);
  begin
     inherited Create (True); // Create suspended

     FBitmap := Bitmap;
     Fxl := xl;
     Fyl := yl;
     Fxu := xu;
     Fyu := yu;
     FXSteps := xsteps;
     FYSteps := ysteps;
     FOffset := offset;
     FIncr   := incr;
     FMax_Iter := max_iter;
     FColor_Pattern := cp;
  end; // Create //

  destructor TCompute.Destroy;
  begin
     inherited Destroy;
  end; // Destroy //

  procedure TCompute.Execute;
  begin
     try
        Work;
     except
        // A thread should never crash in Execute, just ignore the exception
     end;
  end; // Execute //

  procedure TCompute.Work;
  var vBitMapData: TBitmapData;
      row_of_colors: array of TAlphaColor;
      ix, iy: Int32;
      w, h: Int32;
      iter: uInt32;
      xl, yl, xu, yu: TPrecision;
      x, y: TPrecision;
      x0, y0: TPrecision;
      x2, y2: TPrecision;
      x_inc, y_inc: TPrecision;
      inv_max_iter: TPrecision;
      temp: TPrecision;
  begin
  // Initialize the bitmap size
     h := Round (FBitmap.Height);
     w := Round (FBitmap.Width);
     FXsteps := w;
     FYsteps := h;
     inv_max_iter := 1 / FMax_Iter;
     SetLength (row_of_colors, FXSteps);

     xl := Fxl;
     yl := Fyl;
     xu := Fxu;
     yu := Fyu;

  // compute the Mandelbrot image. Iterate row wise, as the bitmap is organized
  // row wise (first y, later x). This makes it easier to multi-thread the
  // computation in a later stage.
     x_inc := (xu - xl) / FXsteps;
     y_inc := (yu - yl) / FYsteps;

  // For each row (y) starting at FOffset, incremented with FIncr
     iy := FOffset;
     while iy < FYsteps do
     begin

  // Compute one column (x)
        ix := 0;
        while ix < FXsteps do
        begin
           x0 := xl + ix * x_inc;
           y0 := yl + iy * y_inc;
           x := 0;
           y := 0;
           x2 := 0;
           y2 := 0;
           iter := 0;
           while ((x2 + y2) < 4) and (iter < FMax_Iter) do
           begin
              temp := x2 - y2 + x0;
              y := 2 * x * y + y0;
              x := temp;
              x2 := Sqr (x);
              y2 := Sqr (y);
              iter := iter + 1;
           end; // while
           case iter mod 4 of // 4 shades of blue
              0: row_of_colors [ix] := $FFFFFFFF;
              1: row_of_colors [ix] := $FF4444FF;
              2: row_of_colors [ix] := $FF8888FF;
              3: row_of_colors [ix] := $FFCCCCFF;
           end; // case
  //         row_of_colors [ix] := create_color (iter * inv_max_iter, FColor_Pattern);
           ix := ix + 1;
        end; // while

  // Copy the computed row to the bitmap. Use the critical section to aquire
  // exclusive write rights to the bitmap
        cs.Acquire;
        try
           if FBitmap.Map (TMapAccess.maWrite, vBitMapData) then
           try
              for ix := 0 to FXSteps - 1
                 do vBitmapData.SetPixel (ix, iy, row_of_colors [ix]); // set the pixel color at x, y
           finally
              FBitmap.Unmap (vBitMapData);   // unlock the bitmap
           end; // if  try..finally
           Tasks_Finished := Tasks_Finished + 1;
        finally
           cs.Release;
        end; // try..finally

  // On to the next row
        iy := iy + FIncr;
     end; // while
  end; // Work //

  end. // Unit: Parallel_Mandelbrot //

它被称为如下:

Mandel := TParallelMandelbrot.Create (Image.Bitmap, Round (Image.Width), Round (Image.Height), 255, 0);
Mandel.compute (32);

您可能已经猜到Image是窗体上的TImage.

任何帮助是极大的赞赏!

更新1
LU RD和David的言论让我重新考虑了算法.结果,我发现TParallelMandelbrot.compute函数中缺少FBitmap.Canvas.EndScene.当我更正该应用程序可同时在Windows和Android上运行时.

最初,我通过使用TAlphoColor矩阵消除了重要的瓶颈,并在完成所有计算后将其复制到位图.根据迭代次数(64和4096),可以节省5/8至3倍的速度来重绘位图.迭代次数越多,计算量越大,出现瓶颈的可能性就越小,这很好地反映在图中.另一个建议是使用WaitFor.这提供了消除关键部分和瓶颈的可能性.就像更新Finished_Tasks一样,剩下的唯一一条语句我在计时结果中找不到.但是,代码得到了极大的改进.

LU RD提到了AlphaColorToScanline.在VCL的日子里,我在ScanLine取得了不错的成绩,因此我期望看到不错的成绩.现在不是.除了噪声以外,我无法检测到使用扫描线之间的差异.更糟糕的是,在Android中,红色和蓝色字节被交换了.在Windows中,它们可以正确显示.

我在下面发布了代码,因此您可以自己检查.以下是一些计时结果(Windows =核心i7-920 4个内核,每个内核都有超线程2.67Ghz; Android = ARMv7、1Ghz,2(?)内核)

  # of    timings in seconds
  threads windows android
    1       5.5     30.0
    2       2.9     20.0
    4       1.6     19.7
    8       1.1       -

请参阅下面的TParallelMandelbrot中的compute.在添加的末尾标记EndScene语句. Windows不太在意,但是Android会.现在,我创建了未挂起的线程,不再需要启动它们.改进几乎不明显.

  function TParallelMandelbrot.compute (iterations: Int32): Int64;
  var Timer: TStopWatch;
      vBitMapData: TBitmapData;
      threads: array of TCompute;
      thread: Int32;

      xi, yi: Int32;
      xs, ys: Int32;
      xl, yl, xu, yu: TPrecision;
  begin
     xl := FStack [FCurrent_Stack].xl;
     yl := FStack [FCurrent_Stack].yl;
     xu := FStack [FCurrent_Stack].xu;
     yu := FStack [FCurrent_Stack].yu;
     xs := FXSteps;
     ys := FYSteps;
     SetLength (threads, FMax_Threads);
     Timer.Create;
     Timer.Reset;
     Timer.Start;
     FBitmap.SetSize (FXSteps, FYSteps);

  // The threads are created suspended, so they have to be started explicitly
     for thread := 0 to Max_Threads - 1
        do threads [thread] := TCompute.Create (FColor_Matrix, xl, yl, xu, yu, xs, ys, thread, Max_Threads, Iterations, Color_Pattern);
     for thread := 0 to Max_Threads - 1
        do threads [thread].WaitFor;

     Timer.Stop;
     Result := Timer.ElapsedMilliseconds;
     FBitmap.Canvas.BeginScene; // Tell the canvas we start drawing
     try
        if FBitmap.Map (TMapAccess.maWrite, vBitMapData) then
        try
           for yi := 0 to ys - 1 do
           for xi := 0 to xs - 1 do
              vBitmapData.SetPixel (xi, yi, FColor_Matrix [yi, xi]); // set the pixel color at x, y
  //            AlphaColorToScanline (FColor_Matrix [yi], vBitmapData.GetScanline (yi), xs, pfA8R8G8B8);
        finally
           FBitmap.Unmap (vBitMapData);   // unlock the bitmap
        end; // if  try..finally
     finally
        FBitmap.Canvas.EndScene;
     end; // try..finally
  end; // compute //

TCompute中的计算功能:

  procedure TCompute.Work;
  var ix, iy: Int32;
      iter: uInt32;
      xl, yl, xu, yu: TPrecision;
      x, y: TPrecision;
      x0, y0: TPrecision;
      x2, y2: TPrecision;
      x_inc, y_inc: TPrecision;
      inv_max_iter: TPrecision;
      temp: TPrecision;
  begin
  // Initialize the bitmap size
     inv_max_iter := 1 / FMax_Iter;

     xl := Fxl;
     yl := Fyl;
     xu := Fxu;
     yu := Fyu;

  // compute the Mandelbrot image. Iterate row wise, as the bitmap is organized
  // row wise (first y, later x). This makes it easier to multi-thread the
  // computation in a later stage.
     x_inc := (xu - xl) / FXsteps;
     y_inc := (yu - yl) / FYsteps;

  // For each row (y) starting at FOffset, incremented with FIncr
     iy := FOffset;
     while iy < FYsteps do
     begin

  // Compute one column (x)
        ix := 0;
        while ix < FXsteps do
        begin
           x0 := xl + ix * x_inc;
           y0 := yl + iy * y_inc;
           x := 0;
           y := 0;
           x2 := 0;
           y2 := 0;
           iter := 0;
           while ((x2 + y2) < 4) and (iter < FMax_Iter) do
           begin
              temp := x2 - y2 + x0;
              y := 2 * x * y + y0;
              x := temp;
              x2 := Sqr (x);
              y2 := Sqr (y);
              iter := iter + 1;
           end; // while
           FColor_Matrix [iy, ix] := create_color (iter * inv_max_iter, FColor_Pattern);
           ix := ix + 1;
        end; // while

  // On to the next row
        iy := iy + FIncr;
     end; // while
  end; // Work //

更新2
最终结论是TBitmap不是线程安全的.看到此link(它在Embarcadero Wiki上的某个位置,但无法重新引用,这是我找到的唯一参考).这就解释了为什么使用中间colot矩阵是一个好主意!

谢谢大家的建议!

解决方法:

我实际上不确定为什么在Android上代码会失败.但是最有可能的解释只是,您是在主线程之外执行GUI工作.之所以这样做,是因为您要在远离主线程的TImage位图上进行操作.

无论如何,使用共享位图和关键部分来收集Mandlebrot计算的结果都是非常低效的.您正在序列化关键部分上的所有线程,以便它们可以写入位图的各个部分.

正如LURD在评论中提到的那样,您可以简单地消除该瓶颈.让您的线程将结果收集到共享的颜色矩阵中.因为每个线程都处理整个行,所以没有数据争用,您可以删除关键部分.一旦所有线程完成,就可以将矩阵映射到位图上,然后完成工作.我认为您可以使用扫描线技术在FMX中高效地执行此操作.

一个可能的扩展障碍是,如果一个线程在第i行的末尾操作而另一个线程在第i行的第1行操作,则可能会导致错误共享.请通过使线程1处理第0行来解决该问题.(N / k )-1,线程2处理行(N / k)..(2N / k)-1等,其中N是行数,k是线程数.换句话说,让每个线程处理连续的行.

更多评论:

>您在Tasks_Finished上具有经典的数据竞争.使用InterlockedIncrement进行更新可以解决该问题.但是,您根本不需要该变量.
>您不需要Tasks_Finished,因为您的等待方法很弱.只需在线程上调用WaitFor等待每个线程完成.循环执行所有线程.这称为加入.在Windows上,有一种用于连接多个线程的有效机制,但是RTL不会公开它们.由于您是跨平台的,因此在调用WaitFor的线程之间进行简单循环就足够了.
>您要在线程过程中禁止异常.也许您的Android代码正在抛出它们,而您却抑制了它们. TThread类已经捕获了所有异常并将其存储在FatalException中.您应该在Execute方法中删除异常处理程序,并检查是否在完成时分配了FatalException.
>创建挂起的线程似乎没有意义,只有在创建完所有线程后才启动它们.为什么要让线程这样等待?那只会延迟进度.创建非暂停的线程,让它们直接投入业务.
>为什么要使用固定大小的堆栈?当然,使用TStack< T>会容易得多.专为这项工作而设计.

标签:multithreading,bitmap,delphi-xe5,android,delphi
来源: https://codeday.me/bug/20191122/2061633.html