python之多进程multiprocessing
作者:互联网
做实验对比不同算法效果的时候,需要得到多个算法的解,如果按单线程依次运行,速度过慢,特别对于需要实验多次,比较均值和方差的时候,时间消耗更大,这时候最好使用多进程的方法,来节省时间。下面是做实验时运用的线程池的代码:
import multiprocessing as mp
def worker_1():
algorithm1.run(9200)
solutions1 = algorithm1.result
return solutions1
def worker_2():
algorithm2.run(10000)
solutions2 = algorithm2.result
return solutions2
def worker_3():
algorithm3.run(10000)
solutions3 = algorithm3.result
return solutions3
def worker_4():
algorithm4.run(9200)
solutions4 = algorithm4.result
return solutions4
def worker_5():
algorithm5.run(10000)
solutions5 = algorithm5.result
return solutions5
def worker_6():
algorithm6.run(10000)
solutions6= algorithm6.result
return solutions6
fun_list = [worker_1,worker_2,worker_3,worker_4,worker_5,worker_6]
def multicore():
pool=mp.Pool(processes=2)#定义一个Pool,并定义CPU核数量为2
multi_res = []
for fun in fun_list:
res=pool.apply_async(fun)
multi_res.append(res)
results_t = [res.get()for res in multi_res]
solutions1 = results_t[0]
solutions2 = results_t[1]
solutions3 = results_t[2]
solutions4 = results_t[3]
solutions5 = results_t[4]
solutions6 = results_t[5]
return solutions1,solutions2,solutions3,solutions4,solutions5,solutions6
if __name__=='__main__':
solutions1, solutions2, solutions3, solutions4, solutions5, solutions6 = multicore()
标签:return,python,res,worker,results,result,之多,multiprocessing,def 来源: https://blog.csdn.net/qq_38384924/article/details/88651342