系统相关
首页 > 系统相关> > linux操作系统:虚拟文件系统,文件多了就需要档案管理系统

linux操作系统:虚拟文件系统,文件多了就需要档案管理系统

作者:互联网

这里,图书馆的书架,也就是硬盘上的文件系统格式已经搭建好了,现在我们还需要一个图书馆管理与借阅系统,也就是文件管理模块。

进程要想往文件系统里面写数据,需要很多层的组件一起合作:

在这里插入图片描述
接下来我们逐层解析。

解析系统调用是了解内核架构最有力的一把钥匙,这里我们只要重点关注这几个最重要的系统调用就可以了:

挂载文件系统

想要操作文件系统,第一件事情就是挂载文件系统。

register_filesystem(&ext4_fs_type);
 
 
static struct file_system_type ext4_fs_type = {
	.owner		= THIS_MODULE,
	.name		= "ext4",
	.mount		= ext4_mount,
	.kill_sb	= kill_block_super,
	.fs_flags	= FS_REQUIRES_DEV,
};

mount系统调用的定义如下:

SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, char __user *, type, unsigned long, flags, void __user *, data)
{
......
	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
......
}

接下来的调用链为:do_mount->do_new_mount->vfs_kern_mount。

struct vfsmount *
vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
{
......
	mnt = alloc_vfsmnt(name);
......
	root = mount_fs(type, flags, name, data);
......
	mnt->mnt.mnt_root = root;
	mnt->mnt.mnt_sb = root->d_sb;
	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
	mnt->mnt_parent = mnt;
	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
	return &mnt->mnt;
}

vfs_kern_mount先是创建struct mount结构,每个挂载的文件系统都对应于这样一个结构

struct mount {
	struct hlist_node mnt_hash;
	struct mount *mnt_parent;
	struct dentry *mnt_mountpoint;
	struct vfsmount mnt;
	union {
		struct rcu_head mnt_rcu;
		struct llist_node mnt_llist;
	};
	struct list_head mnt_mounts;	/* list of children, anchored here */
	struct list_head mnt_child;	/* and going through their mnt_child */
	struct list_head mnt_instance;	/* mount instance on sb->s_mounts */
	const char *mnt_devname;	/* Name of device e.g. /dev/dsk/hda1 */
	struct list_head mnt_list;
......
} __randomize_layout;
 
 
struct vfsmount {
	struct dentry *mnt_root;	/* root of the mounted tree */
	struct super_block *mnt_sb;	/* pointer to superblock */
	int mnt_flags;
} __randomize_layout;

接下来,我们来看调用 mount_fs 挂载文件系统。

struct dentry *
mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
{
	struct dentry *root;
	struct super_block *sb;
......
	root = type->mount(type, flags, name, data);
......
	sb = root->d_sb;
......
}

这里调用大的是ext4_fs_type的mount函数,也就是咱们上面提到的ext4_mount,从文件系统里面读取超级块。在文件系统的实现中,每个在硬盘上的结构,在内存中也对应相同格式的结构。当所有的数据结构都读到内存里面,内核就可以通过操作这些数据结构,来操作文件系统了。

打开文件

接下来,我们从分析 Open 系统调用说起。

SYSCALL_DEFINE3(open, const char __user *, filename, int, flags, umode_t, mode)
{
......
	return do_sys_open(AT_FDCWD, filename, flags, mode);
}
 
 
long do_sys_open(int dfd, const char __user *filename, int flags, umode_t mode)
{
......
	fd = get_unused_fd_flags(flags);
	if (fd >= 0) {
		struct file *f = do_filp_open(dfd, tmp, &op);
		if (IS_ERR(f)) {
			put_unused_fd(fd);
			fd = PTR_ERR(f);
		} else {
			fsnotify_open(f);
			fd_install(fd, f);
		}
	}
	putname(tmp);
	return fd;
}

要打开一个文件,首先要通过get_unused_fd_flags得到一个没有用的文件描述符。如何获取这个文件描述符呢?

在每一个进程的task_struct中,有一个指针files,类型是files_struct

struct files_struct		*files;

files_struct 里面最重要的是一个文件描述符列表,每打开一个文件,就会在这个列表中分配一项,下标就是文件描述符。

struct files_struct {
......
	struct file __rcu * fd_array[NR_OPEN_DEFAULT];
};

对于任何一个进程,默认情况下,文件描述符0表示stdin标准输入,文件描述符1表示stdout标准输出,文件描述符2表示stderr标准错误输出。另外,再打开的文件,都会从这个列表中找一个空闲位置分配给它。

文件描述符列表的每一项都是一个指向struct file的指针,也就是说,每每块一个文件,都会有一个struct file对应。

do_sys_open中调用do_filp_open,就是创建这个struct file结构,然后fd_install(fd, f);是将文件描述符和这个结构关联起来

struct file *do_filp_open(int dfd, struct filename *pathname,
		const struct open_flags *op)
{
......
	set_nameidata(&nd, dfd, pathname);
	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
......
	restore_nameidata();
	return filp;
}

do_filp_open里面首先初始化了 struct nameidata这个结构。我们知道,文件都是一串的路径名称,需要逐个解析。这个结构就是解析和查找路径的时候做辅助作用。

在 struct nameidata里面有一个关键的成员变量struct path

struct path {
	struct vfsmount *mnt;
	struct dentry *dentry;
} __randomize_layout;

其中struct vfsmount和文件系统的挂载有关。另一个struct dentry,除了上面说的用于标识目录之外,还可以表示文件名,还会建立文件名以及inode之间的关联。

接下来就是调用path_openaat,主要做了下面几件事情:

static struct file *path_openat(struct nameidata *nd,
			const struct open_flags *op, unsigned flags)
{
......
	file = get_empty_filp();
......
	s = path_init(nd, flags);
......
	while (!(error = link_path_walk(s, nd)) &&
		(error = do_last(nd, file, op, &opened)) > 0) {
......
	}
	terminate_walk(nd);
......
	return file;
}

例如,文件“/root/hello/world/data”,link_path_walk 会解析前面的路径部分“/root/hello/world”,解析完毕的时候 nameidata 的 dentry 为路径名的最后一部分的父目录“/root/hello/world”,而 nameidata 的 filename 为路径名的最后一部分“data”。

最后一部分的解析和处理,我们交给 do_last。

static int do_last(struct nameidata *nd,
		   struct file *file, const struct open_flags *op,
		   int *opened)
{
......
	error = lookup_fast(nd, &path, &inode, &seq);
......
    error = lookup_open(nd, &path, file, op, got_write, opened);
......
	error = vfs_open(&nd->path, file, current_cred());
......
}

在这里面,我们需要先查找文件路径最后一部分对应的dentry。如何查找呢?

linux为了提高目录项对象的处理效率,设计与实现了目录项高速缓存dentry cache,简称dcache。它主要由两个数据结构组成:

在这里插入图片描述

这两个列表之间会产生复杂的关系:

所以,do_last()在查找dentry的时候,当然先从缓存中查找,调用的是lookup_fast。

如果缓存中没有找到,就需要真的到文件系统里面去找了,lookup_open会创建一个新的dentry,并且调用上一级目录的lnode的inode_operations的lookup函数,对于ext4来说,调用的是ext4_lookup,会到物理文件系统中找inode。最终找到后将新的dentry赋予path变量

static int lookup_open(struct nameidata *nd, struct path *path,
			struct file *file,
			const struct open_flags *op,
			bool got_write, int *opened)
{
    ......
    dentry = d_alloc_parallel(dir, &nd->last, &wq);
    ......
    struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
							     nd->flags);
    ......
    path->dentry = dentry;
	path->mnt = nd->path.mnt;
}
 
 
 
 
const struct inode_operations ext4_dir_inode_operations = {
	.create		= ext4_create,
	.lookup		= ext4_lookup,
...

do_last()的最后一步是调用vfs_open真正打开文件

int vfs_open(const struct path *path, struct file *file,
	     const struct cred *cred)
{
	struct dentry *dentry = d_real(path->dentry, NULL, file->f_flags, 0);
......
	file->f_path = *path;
	return do_dentry_open(file, d_backing_inode(dentry), NULL, cred);
}
 
 
static int do_dentry_open(struct file *f,
			  struct inode *inode,
			  int (*open)(struct inode *, struct file *),
			  const struct cred *cred)
{
......
	f->f_mode = OPEN_FMODE(f->f_flags) | FMODE_LSEEK |
				FMODE_PREAD | FMODE_PWRITE;
	path_get(&f->f_path);
	f->f_inode = inode;
	f->f_mapping = inode->i_mapping;
......
	f->f_op = fops_get(inode->i_fop);
......
	open = f->f_op->open;
......
	error = open(inode, f);
......
	f->f_flags &= ~(O_CREAT | O_EXCL | O_NOCTTY | O_TRUNC);
	file_ra_state_init(&f->f_ra, f->f_mapping->host->i_mapping);
	return 0;
......
}
 
 
const struct file_operations ext4_file_operations = {
......
	.open		= ext4_file_open,
......
};
 

vfs_open里面最终要做的事情是,调用f_op->open,也就是调用ext4_file_open。另外一件重要的事情是将打开文件的所有信息,填写到struct file这个结构里面。

struct file {
	union {
		struct llist_node	fu_llist;
		struct rcu_head 	fu_rcuhead;
	} f_u;
	struct path		f_path;
	struct inode		*f_inode;	/* cached value */
	const struct file_operations	*f_op;
	spinlock_t		f_lock;
	enum rw_hint		f_write_hint;
	atomic_long_t		f_count;
	unsigned int 		f_flags;
	fmode_t			f_mode;
	struct mutex		f_pos_lock;
	loff_t			f_pos;
	struct fown_struct	f_owner;
	const struct cred	*f_cred;
......
	struct address_space	*f_mapping;
	errseq_t		f_wb_err;
}

总结

标签:struct,dentry,......,mnt,文件系统,file,linux,open,操作系统
来源: https://blog.csdn.net/zhizhengguan/article/details/121589226