Ubuntu18.04 搭建YOLOV4环境
作者:互联网
下载代码,编译
git clone https://github.com/AlexeyAB/darknet
cd darknet
make
下载预训练权重:
验证:
caozilong@caozilong-Vostro-3268:~/Workspace/yolo/darknet$ ./darknet detector test ./cfg/coco.data ./cfg/yolov4.cfg ./yolov4.weights data/dog.jpg
GPU isn't used
OpenCV isn't used - data augmentation will be slow
mini_batch = 1, batch = 8, time_steps = 1, train = 0
layer filters size/strd(dil) input output
0 conv 32 3 x 3/ 1 608 x 608 x 3 -> 608 x 608 x 32 0.639 BF
1 conv 64 3 x 3/ 2 608 x 608 x 32 -> 304 x 304 x 64 3.407 BF
2 conv 64 1 x 1/ 1 304 x 304 x 64 -> 304 x 304 x 64 0.757 BF
3 route 1 -> 304 x 304 x 64
4 conv 64 1 x 1/ 1 304 x 304 x 64 -> 304 x 304 x 64 0.757 BF
5 conv 32 1 x 1/ 1 304 x 304 x 64 -> 304 x 304 x 32 0.379 BF
6 conv 64 3 x 3/ 1 304 x 304 x 32 -> 304 x 304 x 64 3.407 BF
7 Shortcut Layer: 4, wt = 0, wn = 0, outputs: 304 x 304 x 64 0.006 BF
8 conv 64 1 x 1/ 1 304 x 304 x 64 -> 304 x 304 x 64 0.757 BF
9 route 8 2 -> 304 x 304 x 128
10 conv 64 1 x 1/ 1 304 x 304 x 128 -> 304 x 304 x 64 1.514 BF
11 conv 128 3 x 3/ 2 304 x 304 x 64 -> 152 x 152 x 128 3.407 BF
12 conv 64 1 x 1/ 1 152 x 152 x 128 -> 152 x 152 x 64 0.379 BF
13 route 11 -> 152 x 152 x 128
14 conv 64 1 x 1/ 1 152 x 152 x 128 -> 152 x 152 x 64 0.379 BF
15 conv 64 1 x 1/ 1 152 x 152 x 64 -> 152 x 152 x 64 0.189 BF
16 conv 64 3 x 3/ 1 152 x 152 x 64 -> 152 x 152 x 64 1.703 BF
17 Shortcut Layer: 14, wt = 0, wn = 0, outputs: 152 x 152 x 64 0.001 BF
18 conv 64 1 x 1/ 1 152 x 152 x 64 -> 152 x 152 x 64 0.189 BF
19 conv 64 3 x 3/ 1 152 x 152 x 64 -> 152 x 152 x 64 1.703 BF
20 Shortcut Layer: 17, wt = 0, wn = 0, outputs: 152 x 152 x 64 0.001 BF
21 conv 64 1 x 1/ 1 152 x 152 x 64 -> 152 x 152 x 64 0.189 BF
22 route 21 12 -> 152 x 152 x 128
23 conv 128 1 x 1/ 1 152 x 152 x 128 -> 152 x 152 x 128 0.757 BF
24 conv 256 3 x 3/ 2 152 x 152 x 128 -> 76 x 76 x 256 3.407 BF
25 conv 128 1 x 1/ 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BF
26 route 24 -> 76 x 76 x 256
27 conv 128 1 x 1/ 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BF
28 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
29 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF
30 Shortcut Layer: 27, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF
31 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
32 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF
33 Shortcut Layer: 30, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF
34 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
35 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF
36 Shortcut Layer: 33, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF
37 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
38 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF
39 Shortcut Layer: 36, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF
40 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
41 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF
42 Shortcut Layer: 39, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF
43 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
44 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF
45 Shortcut Layer: 42, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF
46 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
47 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF
48 Shortcut Layer: 45, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF
49 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
50 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF
51 Shortcut Layer: 48, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF
52 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF
53 route 52 25 -> 76 x 76 x 256
54 conv 256 1 x 1/ 1 76 x 76 x 256 -> 76 x 76 x 256 0.757 BF
55 conv 512 3 x 3/ 2 76 x 76 x 256 -> 38 x 38 x 512 3.407 BF
56 conv 256 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BF
57 route 55 -> 38 x 38 x 512
58 conv 256 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BF
59 conv 256 1 x 1/ 1 38 x 38 x 256 -> 38 x 38 x 256 0.189 BF
60 conv 256 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 256 1.703 BF
61 Shortcut Layer: 58, wt = 0, wn = 0, outputs: 38 x 38 x 256 0.000 BF
62 conv 256 1 x 1/ 1 38 x 38 x 256 -> 38 x 38 x 256 0.189 BF
63 conv 256 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 256 1.703 BF
64 Shortcut Layer: 61, wt = 0, wn = 0, outputs: 38 x 38 x 256 0.000 BF
65 conv 256 1 x 1/ 1 38 x 38 x 256 -> 38 x 38 x 256 0.189 BF
66 conv 256 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 256 1.703 BF
67 Shortcut Layer: 64, wt = 0, wn = 0, outputs: 38 x 38 x 256 0.000 BF
68 conv 256 1 x 1/ 1 38 x 38 x 256 -> 38 x 38 x 256 0.189 BF
69 conv 256 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 256 1.703 BF
70 Shortcut Layer: 67, wt = 0, wn = 0, outputs: 38 x 38 x 256 0.000 BF
71 conv 256 1 x 1/ 1 38 x 38 x 256 -> 38 x 38 x 256 0.189 BF
72 conv 256 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 256 1.703 BF
73 Shortcut Layer: 70, wt = 0, wn = 0, outputs: 38 x 38 x 256 0.000 BF
74 conv 256 1 x 1/ 1 38 x 38 x 256 -> 38 x 38 x 256 0.189 BF
75 conv 256 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 256 1.703 BF
76 Shortcut Layer: 73, wt = 0, wn = 0, outputs: 38 x 38 x 256 0.000 BF
77 conv 256 1 x 1/ 1 38 x 38 x 256 -> 38 x 38 x 256 0.189 BF
78 conv 256 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 256 1.703 BF
79 Shortcut Layer: 76, wt = 0, wn = 0, outputs: 38 x 38 x 256 0.000 BF
80 conv 256 1 x 1/ 1 38 x 38 x 256 -> 38 x 38 x 256 0.189 BF
81 conv 256 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 256 1.703 BF
82 Shortcut Layer: 79, wt = 0, wn = 0, outputs: 38 x 38 x 256 0.000 BF
83 conv 256 1 x 1/ 1 38 x 38 x 256 -> 38 x 38 x 256 0.189 BF
84 route 83 56 -> 38 x 38 x 512
85 conv 512 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 512 0.757 BF
86 conv 1024 3 x 3/ 2 38 x 38 x 512 -> 19 x 19 x1024 3.407 BF
87 conv 512 1 x 1/ 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BF
88 route 86 -> 19 x 19 x1024
89 conv 512 1 x 1/ 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BF
90 conv 512 1 x 1/ 1 19 x 19 x 512 -> 19 x 19 x 512 0.189 BF
91 conv 512 3 x 3/ 1 19 x 19 x 512 -> 19 x 19 x 512 1.703 BF
92 Shortcut Layer: 89, wt = 0, wn = 0, outputs: 19 x 19 x 512 0.000 BF
93 conv 512 1 x 1/ 1 19 x 19 x 512 -> 19 x 19 x 512 0.189 BF
94 conv 512 3 x 3/ 1 19 x 19 x 512 -> 19 x 19 x 512 1.703 BF
95 Shortcut Layer: 92, wt = 0, wn = 0, outputs: 19 x 19 x 512 0.000 BF
96 conv 512 1 x 1/ 1 19 x 19 x 512 -> 19 x 19 x 512 0.189 BF
97 conv 512 3 x 3/ 1 19 x 19 x 512 -> 19 x 19 x 512 1.703 BF
98 Shortcut Layer: 95, wt = 0, wn = 0, outputs: 19 x 19 x 512 0.000 BF
99 conv 512 1 x 1/ 1 19 x 19 x 512 -> 19 x 19 x 512 0.189 BF
100 conv 512 3 x 3/ 1 19 x 19 x 512 -> 19 x 19 x 512 1.703 BF
101 Shortcut Layer: 98, wt = 0, wn = 0, outputs: 19 x 19 x 512 0.000 BF
102 conv 512 1 x 1/ 1 19 x 19 x 512 -> 19 x 19 x 512 0.189 BF
103 route 102 87 -> 19 x 19 x1024
104 conv 1024 1 x 1/ 1 19 x 19 x1024 -> 19 x 19 x1024 0.757 BF
105 conv 512 1 x 1/ 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BF
106 conv 1024 3 x 3/ 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BF
107 conv 512 1 x 1/ 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BF
108 max 5x 5/ 1 19 x 19 x 512 -> 19 x 19 x 512 0.005 BF
109 route 107 -> 19 x 19 x 512
110 max 9x 9/ 1 19 x 19 x 512 -> 19 x 19 x 512 0.015 BF
111 route 107 -> 19 x 19 x 512
112 max 13x13/ 1 19 x 19 x 512 -> 19 x 19 x 512 0.031 BF
113 route 112 110 108 107 -> 19 x 19 x2048
114 conv 512 1 x 1/ 1 19 x 19 x2048 -> 19 x 19 x 512 0.757 BF
115 conv 1024 3 x 3/ 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BF
116 conv 512 1 x 1/ 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BF
117 conv 256 1 x 1/ 1 19 x 19 x 512 -> 19 x 19 x 256 0.095 BF
118 upsample 2x 19 x 19 x 256 -> 38 x 38 x 256
119 route 85 -> 38 x 38 x 512
120 conv 256 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BF
121 route 120 118 -> 38 x 38 x 512
122 conv 256 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BF
123 conv 512 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BF
124 conv 256 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BF
125 conv 512 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BF
126 conv 256 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BF
127 conv 128 1 x 1/ 1 38 x 38 x 256 -> 38 x 38 x 128 0.095 BF
128 upsample 2x 38 x 38 x 128 -> 76 x 76 x 128
129 route 54 -> 76 x 76 x 256
130 conv 128 1 x 1/ 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BF
131 route 130 128 -> 76 x 76 x 256
132 conv 128 1 x 1/ 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BF
133 conv 256 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 256 3.407 BF
134 conv 128 1 x 1/ 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BF
135 conv 256 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 256 3.407 BF
136 conv 128 1 x 1/ 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BF
137 conv 256 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 256 3.407 BF
138 conv 255 1 x 1/ 1 76 x 76 x 256 -> 76 x 76 x 255 0.754 BF
139 yolo
[yolo] params: iou loss: ciou (4), iou_norm: 0.07, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.20
nms_kind: greedynms (1), beta = 0.600000
140 route 136 -> 76 x 76 x 128
141 conv 256 3 x 3/ 2 76 x 76 x 128 -> 38 x 38 x 256 0.852 BF
142 route 141 126 -> 38 x 38 x 512
143 conv 256 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BF
144 conv 512 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BF
145 conv 256 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BF
146 conv 512 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BF
147 conv 256 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BF
148 conv 512 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BF
149 conv 255 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 255 0.377 BF
150 yolo
[yolo] params: iou loss: ciou (4), iou_norm: 0.07, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.10
nms_kind: greedynms (1), beta = 0.600000
151 route 147 -> 38 x 38 x 256
152 conv 512 3 x 3/ 2 38 x 38 x 256 -> 19 x 19 x 512 0.852 BF
153 route 152 116 -> 19 x 19 x1024
154 conv 512 1 x 1/ 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BF
155 conv 1024 3 x 3/ 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BF
156 conv 512 1 x 1/ 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BF
157 conv 1024 3 x 3/ 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BF
158 conv 512 1 x 1/ 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BF
159 conv 1024 3 x 3/ 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BF
160 conv 255 1 x 1/ 1 19 x 19 x1024 -> 19 x 19 x 255 0.189 BF
161 yolo
[yolo] params: iou loss: ciou (4), iou_norm: 0.07, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.05
nms_kind: greedynms (1), beta = 0.600000
Total BFLOPS 128.459
avg_outputs = 1068395
Loading weights from ./yolov4.weights...
seen 64, trained: 32032 K-images (500 Kilo-batches_64)
Done! Loaded 162 layers from weights-file
Detection layer: 139 - type = 28
Detection layer: 150 - type = 28
Detection layer: 161 - type = 28
data/dog.jpg: Predicted in 19868.358000 milli-seconds.
bicycle: 92%
dog: 98%
truck: 92%
pottedplant: 33%
Not compiled with OpenCV, saving to predictions.png instead
caozilong@caozilong-Vostro-3268:~/Workspace/yolo/darknet$
./darknet detector test ./cfg/coco.data ./cfg/yolov4.cfg ./yolov4.weights data/person.jpg
结束!
标签:BF,38,conv,19,76,YOLOV4,Ubuntu18.04,256,搭建 来源: https://blog.csdn.net/tugouxp/article/details/119299727