系统相关
首页 > 系统相关> > 【Java技术探索】各种类型对象占用内存情况分析(下)

【Java技术探索】各种类型对象占用内存情况分析(下)

作者:互联网

# 前提回顾 > **建议大家从[【Java技术专题-JVM研究系列(39)Java各种类型对象占用内存情况分析(上)】](https://blog.51cto.com/alex4dream/2928921 "【Java技术专题-JVM研究系列(39)Java各种类型对象占用内存情况分析(上)】")开始学习比较好,这样子会有一个承接和过度。根据前面的学习的内存占用计算规则,可以计算出一个对象在内存中的占用空间大小情况,下面举例分析下Java中的Enum, ArrayList及HashMap的内存占用情况,读者可以仿照分析计算过程来计算其他数据结构的内存占用情况**。 > **注: 下面的分析计算基于HotSpot Jvm, JDK1.8, 64位机器,开启指针压缩。**。 # 对象头 这里只关注其内存占用大小。在64位机器上,默认不开启指针压缩(-XX:-UseCompressedOops)的情况下,对象头占用12bytes,开启指针压缩(-XX:+UseCompressedOops)则占用16bytes。 # 实例数据: > **对象引用(reference)类型在64位机器上,关闭指针压缩时占用8bytes, 开启时占用4bytes,一般指的是局部变量表或者操作数栈中的reference类型或者针对于成员变量情况下的地址引用(shallow size)**。 > **注: 下面的分析计算基于HotSpot Jvm, JDK1.8, 64位机器,开启指针压缩**。 # 枚举类 > 创建enum时,编译器会生成一个相关的类,这个类继承自`java.lang.Enum`。Enum类拥有两个属性变量,分别为**int的ordinal和String的name**, 相关源码如下: ```java public abstract class Enum> implements Comparable, Serializable { /** * The name of this enum constant, as declared in the enum declaration. * Most programmers should use the {@link #toString} method rather than * accessing this field. */ private final String name; /** * The ordinal of this enumeration constant (its position * in the enum declaration, where the initial constant is assigned * an ordinal of zero). * * Most programmers will have no use for this field. It is designed * for use by sophisticated enum-based data structures, such as * {@link java.util.EnumSet} and {@link java.util.EnumMap}. */ private final int ordinal; } ``` 以下面的TestEnum为例进行枚举类的内存占用分析 ```java public enum TestEnum { ONE(1, "one"), TWO(2, "two"); private int code; private String desc; TestEnum(int code, String desc) { this.code = code; this.desc = desc; } public int getCode() { return code; } public String getDesc() { return desc; } } ``` 这里TestEnum的每个实例除了父类的两个属性外,还拥有一个int的code及String的desc属性,所以一个TestEnum的实例本身所占用的内存大小为: ```` 12(header) + 4(ordinal) + 4(name reference) + 4(code) + 4(desc reference) = 28(padding) -> 32 bytes. ```` 总共占用的内存大小为: 按照上面对字符串类型的分析,desc和name都占用:48bytes。 所以TestEnum.ONE占用总内存大小为: ```` 12(header) + 4(ordinal) + 4(code) + 48 * 2(desc, name) + 4(desc reference) + 4(name reference) = 128 (bytes) ```` # ArrayList > ArrayList实现List接口,底层使用数组保存所有元素。其操作基本上是对数组的操作。下面分析下源代码: ## 底层使用数组保存数据: ```java /** * The array buffer into which the elements of the ArrayList are stored. * The capacity of the ArrayList is the length of this array buffer. Any * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA * will be expanded to DEFAULT_CAPACITY when the first element is added. */ transient Object[] elementData; // non-private to simplify nested class access ``` ## 构造方法 > **ArrayList提供了三种方式的构造器,可以构造一个默认的空列表、构造一个指定初始容量的空列表及构造一个包含指定collection元素的列表,这些元素按照该collection的迭代器返回它们的顺序排列**。 ```java /** * Shared empty array instance used for default sized empty instances. We * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when * first element is added. */ private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; /** * Constructs an empty list with the specified initial capacity. * * @ initialCapacity the initial capacity of the list * @throws IllegalArgumentException if the specified initial capacity * is negative */ public ArrayList(int initialCapacity) { if (initialCapacity > 0) { this.elementData = new Object[initialCapacity]; } else if (initialCapacity == 0) { this.elementData = EMPTY_ELEMENTDATA; } else { throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); } } /** * Constructs an empty list with an initial capacity of ten. */ public ArrayList() { this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA; } /** * Constructs a list containing the elements of the specified * collection, in the order they are returned by the collection's * iterator. * * @ c the collection whose elements are to be placed into this list * @throws NullPointerException if the specified collection is null */ public ArrayList(Collection<? extends E> c) { elementData = c.toArray(); if ((size = elementData.length) != 0) { // c.toArray might (incorrectly) not return Object[] (see 6260652) if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, size, Object[].class); } else { // replace with empty array. this.elementData = EMPTY_ELEMENTDATA; } } ``` ## 存储 > ArrayList提供了set(int index, E element)、add(E e)、add(int index, E element)、addAll(Collection<? extends E> c)等,这里着重介绍一下add(E e)方法。 ```java /** * Appends the specified element to the end of this list. * * @ e element to be appended to this list * @return true (as specified by {@link Collection#add}) */ public boolean add(E e) { ensureCapacityInternal(size + 1); // Increments modCount!! elementData[size++] = e; return true; } ``` > add方法将指定的元素添加到此列表的尾部。这里注意下ensureCapacityInternal方法,这个方法会检查添加后元素的个数是否会超过当前数组的长度,如果超出,数组将会进行扩容。 ```java /** * Default initial capacity. */ private static final int DEFAULT_CAPACITY = 10; /** * Increases the capacity of this ArrayList instance, if * necessary, to ensure that it can hold at least the number of elements * specified by the minimum capacity argument. * * @ minCapacity the desired minimum capacity */ public void ensureCapacity(int minCapacity) { int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) // any size if not default element table ? 0 // larger than default for default empty table. It's already // supposed to be at default size. : DEFAULT_CAPACITY; if (minCapacity > minExpand) { ensureExplicitCapacity(minCapacity); } } private void ensureCapacityInternal(int minCapacity) { if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) { minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity); } ensureExplicitCapacity(minCapacity); } private void ensureExplicitCapacity(int minCapacity) { modCount++; // overflow-conscious code if (minCapacity - elementData.length > 0) grow(minCapacity); } ``` > 如果初始时没有指定ArrayList大小,在第一次调用add方法时,会初始化数组默认最小容量为10。看下grow方法的源码: ```java /** * Increases the capacity to ensure that it can hold at least the * number of elements specified by the minimum capacity argument. * * @ minCapacity the desired minimum capacity */ private void grow(int minCapacity) { // overflow-conscious code int oldCapacity = elementData.length; int newCapacity = oldCapacity + (oldCapacity >> 1); if (newCapacity - minCapacity < 0) newCapacity = minCapacity; if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); // minCapacity is usually close to size, so this is a win: elementData = Arrays.copyOf(elementData, newCapacity); } ``` > 从上述代码可以看出,数组进行扩容时,会将老数组中的元素重新拷贝一份到新的数组中,每次数组扩容的增长是原容量的1.5倍。这种操作的代价是很高的,因此在实际使用时,应该尽量避免数组容量的扩张。当可预知要保存的元素的数量时,要在构造ArrayList实例时,就指定其容量,以避免数组扩容的发生。或者根据实际需求,通过调用ensureCapacity方法来手动增加ArrayList实例的容量。 ## 内存占用 > 下面开始分析ArrayList的内存占用情况。ArrayList继承AbstractList类,AbstractList拥有一个int类型的modCount属性,ArrayList本身拥有一个int类型的size属性和一个数组属性。 所以一个ArrayList实例本身的的大小为: > **12(header) + 4(modCount) + 4(size) + 4(elementData reference) = 24 (bytes)** 下面分析一个只有一个Integer(1)元素的ArrayList实例占用的内存大小。 ```java ArrayList testList = Lists.newArrayList(); testList.add(1); ``` 根据上面对ArrayList原理的介绍,当调用add方法时,ArrayList会初始化一个默认大小为10的数组,而数组中保存的Integer(1)实例大小为16 bytes。则testList占用的内存大小为: > **24(ArrayList itselft) + 16(elementData array header) + 10 * 4(elemetData reference) + 16(Integer) = 96 (bytes)** # HashMap ## HashMap的数据结构 HashMap是一个“链表散列”的数据结构,即数组和链表的结合体。 ![](https://oscimg.oschina.net/oscnet/up-70378a72968d75624a2c89763ca7e42d8fa.png) 从图上可以看出,HashMap底层是一个数组结构,数组中的每一项又是一个链表。当新建一个HashMap的时候,初始化一个数组,源码如下: ```java /** * The table, initialized on first use, and resized as * necessary. When allocated, length is always a power of two. * (We also tolerate length zero in some operations to allow * bootstrapping mechanics that are currently not needed.) */ transient Node<K,V>[] table; ``` Node是链表中一个结点,一个Node对象保存了一对HashMap的Key,Value以及指向下一个节点的指针,源码如下: ```java /** * Basic hash bin node, used for most entries. (See below for * TreeNode subclass, and in LinkedHashMap for its Entry subclass.) */ static class Node<K,V> implements Map.Entry<K,V> { final int hash; final K key; V value; Node<K,V> next; Node(int hash, K key, V value, Node<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } } ``` ## 构造方法 > **HashMap提供了四种方式的构造器,分别为指定初始容量及负载因子构造器,指定初始容量构造器,不指定初始容量及负载因子构造器,以及根据已有Map生成新Map的构造器**。 ```java /** * Constructs an empty HashMap with the specified initial * capacity and load factor. * * @ initialCapacity the initial capacity * @ loadFactor the load factor * @throws IllegalArgumentException if the initial capacity is negative * or the load factor is nonpositive */ public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity); } /** * Constructs an empty HashMap with the specified initial * capacity and the default load factor (0.75). * * @ initialCapacity the initial capacity. * @throws IllegalArgumentException if the initial capacity is negative. */ public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } /** * Constructs an empty HashMap with the default initial capacity * (16) and the default load factor (0.75). */ public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted } /** * Constructs a new HashMap with the same mappings as the * specified Map. The HashMap is created with * default load factor (0.75) and an initial capacity sufficient to * hold the mappings in the specified Map. * * @ m the map whose mappings are to be placed in this map * @throws NullPointerException if the specified map is null */ public HashMap(Map<? extends K, ? extends V> m) { this.loadFactor = DEFAULT_LOAD_FACTOR; putMapEntries(m, false); } ``` > **如果不指定初始容量及负载因子,默认的初始容量为16, 负载因子为0.75**。 **负载因子衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小**。对于使用链表法的散列表来说,查找一个元素的平均时间是O(1+a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。 HashMap有一个容量阈值属性threshold,是根据初始容量和负载因子计算得出threshold=capacity*loadfactor, 如果HashMap中数组元素的个数超过这个阈值,则HashMap会进行扩容。HashMap底层的数组长度总是2的n次方,每次扩容容量为原来的2倍。 扩容的目的是为了减少hash冲突,提高查询效率。而在HashMap数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是resize。 ## 数据的存储 ```java public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } /** * Implements Map.put and related methods * @ hash hash for key * @ key the key * @ value the value to put * @ onlyIfAbsent if true, don't change existing value * @ evict if false, the table is in creation mode. * @return previous value, or null if none */ final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; //初始化数组的大小为16,容量阈值为16*0.75=12 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; //如果key的hash值对应的数组位置没有元素,则新建Node放入此位置 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; } ``` 从上面的源代码中可以看出:当我们往HashMap中put元素的时候,先根据key的hashCode重新计算hash值,根据hash值得到这个元素在数组中的位置(即下标)。 如果数组该位置上已经存放有其他元素了,那么在这个位置上的元素将以链表的形式存放,新加入的放在链头,最先加入的放在链尾。如果数组该位置上没有元素,就直接将该元素放到此数组中的该位置上。 ## HashMap内存占用 这里分析一个只有一组键值对的HashMap, 结构如下: ```java Map<Integer, Integer> testMap = Maps.newHashMap(); testMap.put(1, 2); ``` 首先分析HashMap本身的大小。HashMap对象拥有的属性包括: ```java /** * The table, initialized on first use, and resized as * necessary. When allocated, length is always a power of two. * (We also tolerate length zero in some operations to allow * bootstrapping mechanics that are currently not needed.) */ transient Node<K,V>[] table; /** * Holds cached entrySet(). Note that AbstractMap fields are used * for keySet() and values(). */ transient Set<Map.Entry<K,V>> entrySet; /** * The number of key-value mappings contained in this map. */ transient int size; /** * The number of times this HashMap has been structurally modified * Structural modifications are those that change the number of mappings in * the HashMap or otherwise modify its internal structure (e.g., * rehash). This field is used to make iterators on Collection-views of * the HashMap fail-fast. (See ConcurrentModificationException). */ transient int modCount; /** * The next size value at which to resize (capacity * load factor). * * @serial */ // (The javadoc description is true upon serialization. // Additionally, if the table array has not been allocated, this // field holds the initial array capacity, or zero signifying // DEFAULT_INITIAL_CAPACITY.) int threshold; /** * The load factor for the hash table. * * @serial */ final float loadFactor; ``` HashMap继承了AbstractMap<K,V>, AbstractMap有两个属性: ```java transient Set keySet; transient Collection values; ``` 所以一个HashMap对象本身的大小为: > **12(header) + 4(table reference) + 4(entrySet reference) + 4(size) + 4(modCount) + 4(threshold) + 8(loadFactor) + 4(keySet reference) + 4(values reference) = 48(bytes)** 接着分析testMap实例在总共占用的内存大小。 根据上面对HashMap原理的介绍,可知每对键值对对应一个Node对象。根据上面的Node的数据结构,一个Node对象的大小为: ```java 12(header) + 4(hash reference) + 4(key reference) + 4(value reference) + 4(next pointer reference) = 28 (padding) -> 32(bytes) ``` 加上Key和Value两个Integer对象,一个Node占用内存总大小为:`32 + 2 * 16 = 64(bytes)` 下面分析HashMap的Node数组的大小。 根据上面HashMap的原理可知,在不指定容量大小的情况下,HashMap初始容量为16,所以testMap的Node[]占用的内存大小为: > **16(header) + 16 * 4(Node reference) + 64(Node) = 144(bytes)** 所以,testMap占用的内存总大小为: **48(map itself) + 144(Node[]) = 192(bytes)** > 这里只用一个例子说明如何对HashMap进行占用内存大小的计算,根据HashMap初始化容量的大小,以及扩容的影响,HashMap占用内存大小要进行具体分析,

标签:capacity,Java,HashMap,各种类型,int,ArrayList,内存,key,hash
来源: https://blog.51cto.com/alex4dream/2935106