数据库
首页 > 数据库> > Spark-Sql 问题梳理

Spark-Sql 问题梳理

作者:互联网

Spark-Sql 问题梳理

Exception in thread “main” org.apache.spark.sql.AnalysisException: Table or view not found: test; line 1 pos 14

Exception in thread "main" org.apache.spark.sql.AnalysisException: Table or view not found: test; line 1 pos 14
	at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:47)
	at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.org$apache$spark$sql$catalyst$analysis$Analyzer$ResolveRelations$$lookupTableFromCatalog(Analyzer.scala:733)
	at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.resolveRelation(Analyzer.scala:685)
	at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$8.applyOrElse(Analyzer.scala:715)
	at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$8.applyOrElse(Analyzer.scala:708)
	at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$apply$1.apply(AnalysisHelper.scala:90)
	at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$apply$1.apply(AnalysisHelper.scala:90)
	at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
	at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:89)
	at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:86)
	at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:194)
	at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$class.resolveOperatorsUp(AnalysisHelper.scala:86)
	at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29)
	at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$1.apply(AnalysisHelper.scala:87)
	at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$1.apply(AnalysisHelper.scala:87)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:326)
	at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
	at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:324)
	at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:87)
	at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:86)
	at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:194)
	at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$class.resolveOperatorsUp(AnalysisHelper.scala:86)
	at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29)
	at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:708)
	at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:654)
	at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:87)
	at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:84)
	at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124)
	at scala.collection.immutable.List.foldLeft(List.scala:84)
	at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:84)
	at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:76)
	at scala.collection.immutable.List.foreach(List.scala:381)
	at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:76)
	at org.apache.spark.sql.catalyst.analysis.Analyzer.org$apache$spark$sql$catalyst$analysis$Analyzer$$executeSameContext(Analyzer.scala:127)
	at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:121)
	at org.apache.spark.sql.catalyst.analysis.Analyzer$$anonfun$executeAndCheck$1.apply(Analyzer.scala:106)
	at org.apache.spark.sql.catalyst.analysis.Analyzer$$anonfun$executeAndCheck$1.apply(Analyzer.scala:105)
	at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.markInAnalyzer(AnalysisHelper.scala:201)
	at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:105)
	at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:57)
	at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:55)
	at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:47)
	at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:79)
	at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:642)
	at com.gw.structed_streaming.TestStructuredStreaming_kafka$.main(TestStructuredStreaming_kafka.scala:41)
	at com.gw.structed_streaming.TestStructuredStreaming_kafka.main(TestStructuredStreaming_kafka.scala)
Caused by: org.apache.spark.sql.catalyst.analysis.NoSuchTableException: Table or view 'test' not found in database 'default';
	at org.apache.spark.sql.catalyst.catalog.ExternalCatalog$class.requireTableExists(ExternalCatalog.scala:48)
	at org.apache.spark.sql.catalyst.catalog.InMemoryCatalog.requireTableExists(InMemoryCatalog.scala:45)
	at org.apache.spark.sql.catalyst.catalog.InMemoryCatalog.getTable(InMemoryCatalog.scala:326)
	at org.apache.spark.sql.catalyst.catalog.ExternalCatalogWithListener.getTable(ExternalCatalogWithListener.scala:138)
	at org.apache.spark.sql.catalyst.catalog.SessionCatalog.lookupRelation(SessionCatalog.scala:701)
	at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.org$apache$spark$sql$catalyst$analysis$Analyzer$ResolveRelations$$lookupTableFromCatalog(Analyzer.scala:730)
	... 44 more


分析及解决办法

代码:
		ds.createOrReplaceGlobalTempView("test")
		val dfs: DataFrame = spark.sql("select * from test")
		createOrReplaceGlobalTempView 这个方法的库为“global_temp”,
		所以在查询的时候加上库名即可找到table。
		不加库名,缺省为 "default"。
	TIPS:
		具体问题具体分析,是解决问题的关键,比如说你是
		sparkSession.enableHiveSupport,
		sparkSession.sql("select * from hive 里面的一张表"), 这种情况就要从源端去解决你的问题。
		重点来了: 不要随意执行,删除/清空等危险操作,要不就成了面向牢饭编程了。

标签:scala,Sql,梳理,catalyst,sql,apache,org,spark,Spark
来源: https://blog.csdn.net/yswhfd/article/details/117384275