一个spark SQL和DataFrames的故事
作者:互联网
package com.lin.spark import org.apache.spark.sql.{Row, SparkSession} import org.apache.spark.sql.types.{StringType, StructField, StructType} /** * Created by Yaooo on 2019/6/8. */ object SparkSQLExample { case class Person(name:String,age:Long) def main(args: Array[String]): Unit = { val spark = SparkSession .builder() .appName("Spark SQL") .config("spark.come.config.option","some-value") .master("local[2]") .getOrCreate() runBasicDataFrameExample(spark) runDatasetCreationExample(spark) runInferSchemaExample(spark) runProgrammaticSchemaExample(spark) } private def runProgrammaticSchemaExample(spark:SparkSession): Unit ={ import spark.implicits._ val personRDD = spark.sparkContext.textFile("src/main/resources/people.txt") val schemaString = "name age" val fields = schemaString.split(" ") .map(fieldName => StructField(fieldName, StringType, nullable = true)) val schema = StructType(fields) val rowRDD = personRDD .map(_.split(",")) .map(att => Row(att(0),att(1).trim)) val peopleDF = spark.createDataFrame(rowRDD,schema) peopleDF.createOrReplaceTempView("people") val results = spark.sql("select * from people") results.map(att=>"Name : "+att(0)).show() } private def runInferSchemaExample(spark:SparkSession): Unit ={ import spark.implicits._ val personDF = spark.sparkContext .textFile("src/main/resources/people.txt") .map(_.split(",")) .map(attributes => Person(attributes(0),attributes(1).trim.toInt)) .toDF() personDF.createOrReplaceTempView("people") val teenagersDF = spark.sql("select * from people where age between 13 and 19") teenagersDF.show() teenagersDF.map(teenager =>"name: "+teenager(0)).show() teenagersDF.map(teenager => "Name: "+ teenager.getAs[String]("name")).show() implicit val mapEncoder = org.apache.spark.sql.Encoders.kryo[Map[String, Any]] teenagersDF.map(teenager => teenager.getValuesMap[Any](List("name","age"))).collect() .foreach(println) } private def runDatasetCreationExample(spark:SparkSession): Unit ={ import spark.implicits._ val caseClassDS = Seq(Person("Andy",18)).toDF() caseClassDS.show() val primitiveDS = Seq(1, 2, 3).toDS() primitiveDS.map(_+1).collect().foreach(println) val path = "src/main/resources/person.json" val personDS = spark.read.json(path).as[Person] personDS.show() } private def runBasicDataFrameExample(spark:SparkSession): Unit ={ import spark.implicits._ val df = spark.read.json("src/main/resources/person.json") df.show() df.printSchema() df.select("name").show() df.select($"name",$"age"+1).show() df.filter($"age">21).show() df.groupBy($"age").count().show() /*df.createOrReplaceTempView("people") val sqlDF = spark.sql("select * from people") sqlDF.show()*/ df.createOrReplaceGlobalTempView("people") spark.sql("select * from global_temp.people").show() } }
标签:map,val,people,df,show,DataFrames,SQL,spark 来源: https://www.cnblogs.com/linkmust/p/10992643.html