大数据算法——布隆过滤器
作者:互联网
原理
在我之前的理解当中,如果想要判断某个元素在不在集合当中,经典的结构应该是平衡树和hash table。但是无论是哪一种方法,都逃不开一点,都需要存储原值。
比如在爬虫场景当中,我们需要记录下之前爬过的网站。我们要将之前的网址全部都存储在容器里,然后在遇到新网站的时候去判断是否已经爬过了。在这个问题当中,我们并不关心之前爬过的网站有哪些,我们只关心现在的网站有没有在之前出现过。也就是说之前出现过什么不重要,现在的有没有出现过才重要。
我们利用平衡树或者是Trie或者是AC自动机等数据结构和算法可以实现高效的查找,但是都离不开存储下所有的字符串。想象一下,一个网址大概上百个字符,大约0.1KB,如果是一亿个网址,就需要10GB了,如果是一百亿一千亿呢?显然这么大的规模就很麻烦了,今天要介绍的布隆过滤器就可以解决这个问题,而且不需要存储下原值,这是一个非常巧妙的做法,让我们一起来看下它的原理。
布隆过滤器本身的结构非常简单,就是一个一维的bool型的数组,也就是说每一位只有0或者1,是一个bit,这个数组的长度是m。对于每个新增的项,我们使用K种不同的hash算法对它计算hash值。所以我们可以得到K个hash值,我们用hash值对m取模,假设是x。刚开始的时候数组内全部都是0,我们把所有x对应的位置标记为1。
举个例子,假设我们一开始m是10,K是3。我们遇到第一个插入的值是”线性代数“,我们对它hash之后得到1,3,5,那么我们将对应的位置标记成1.
然后我们又遇到了一个值是”高等数学“,hash之后得到1,8,9,我们还是将对应位置赋值成1,会发现1这个位置对应的值已经是1了,我们忽略就好。
如果这个时候我们想要判断”概率统计”有没有出现过,怎么办?很简单,我们对“概率统计”再计算hash值。假设得到1,4,5,我们去遍历一下对应的位置,发现4这个位置是0,说明之前没有添加过“概率统计”,显然“概率统计”没有出现过。
但是如果“概率统计”hash之后的结果是1,3,8呢?我们判断它出现过就错了,答案很简单,因为虽然1,3,8这个hash组合之前没有出现过,但是对应的位置都在其他元素中出现过了,这样就出现误差了。所以我们可以知道,布隆过滤器对于不存在的判断是准确的,但是对于存在的判断是有可能有错误的。
代码
布隆过滤器的原理很简单,明白了之后,我们很容易写出代码:# 插入元素
def BloomFilter(filter, value, hash_functions):
m = len(filter)
for func in hash_functions:
idx = func(value) % m
filter[idx] = True
return filter
# 判断元素
def MemberInFilter(filter, value, hash_functions):
m = len(filter)
for func in hash_functions:
idx = func(value) % m
if not filter[idx]:
return False
return True
错误率计算
之前的例子当中应该展示得很明白了,布隆过滤器虽然好用,但是会存在bad case,也就是判断错误的情况。那么,这种错误判断发生的概率有多大呢?
这个概率的计算也不难:由于数组长度是mm,所以插入一个bit它被置为1的概率是1m1m,插入一个元素需要插入k个hash值,所以插入一个元素,某一位没有被置为1的概率是(1−1m)k(1−1m)k。插入n个元素之后,某一位依旧为0的概率是(1−1m)nk(1−1m)nk,它变成1的概率是1−(1−1m)nk1−(1−1m)nk。
如果在某次判断当中,有一个没有出现过的元素被认为已经在集合当中了,那么也就是说它hash得到的位置均已经在之前被置为1了,这个时间发生的概率为:
[1−(1−1m)nk]k≈(1−e−knm)k[1−(1−1m)nk]k≈(1−e−knm)k
这里用到了一个极限:
limx→−∞(1−1x)−x=elimx→−∞(1−1x)−x=e
我们来求一下冲突率最低时k的取值,为了方便计算,我们令b=enmb=enm,代入:
f(k)=(1−b−k)klnf(k)=kln(1−b−k)f(k)=(1−b−k)klnf(k)=kln(1−b−k)
两边求导:
1f(k)f′(k)=ln(1−b−k)+kb−klnb1−b−k1f(k)f′(k)=ln(1−b−k)+kb−klnb1−b−k
我们令导数等于0,来求它的极值:
ln(1−b−k)(1−b−k)ln(1−b−k)(1−b−k)1−b−kb−k=−kb−klnb=b−klnb−k=b−k=12ln(1−b−k)(1−b−k)=−kb−klnbln(1−b−k)(1−b−k)=b−klnb−k1−b−k=b−kb−k=12
我们将b−k=12b−k=12代入,可以求出最值时的k=ln2⋅mn≈0.7mnk=ln2⋅mn≈0.7mn
同理,我们也可以预设定集合元素n和错判率p,来求解对应的n,同样利用上面的公式推算,可以得到m=−nlnp(ln2)2m=−nlnp(ln2)2
如果我们允许一定的容错,并且能够大概估计会出现的元素的个数,那么完全可以使用布隆过滤器来代替传统的容器判重的方法。这样不仅效率极高,而且对于存储的要求非常小。
灵魂拷问
原理也明白了,代码也看懂了,这个时候我们来思考一个问题:布隆过滤器可以删除元素吗?
很遗憾,布隆过滤器是不支持删除的。
因为布隆过滤器的每一个bit并不是独占的,很有可能多个元素共享了某一位。如果我们直接删除这一位的话,会影响其他的元素。
还是用上面的例子举例:我们删除线性代数,线性代数对应的位置是1,3,5,虽然我们并没有删除高等数学,但是由于我们移除了高等数学也用到的位置1,如果我们再去判断高等数学是否存在就会得到错误的结果,虽然我们并没有删除它。
当然,在一些必须要有删除功能的场景下,也是有办法的。方法也很简单,就是修改数据结构,将原本每一位一个bit改成一个int,当我们插入元素的时候,不再是将bit设置为true,而是让对应的位置自增,而删除的时候则是对应的位减一。这样,我们删除单个结果就不会影响其他元素了。
这种方法并不是完美的,由于布隆过滤器存在误判的情况,很有可能我们会删除原本就不存在的值,这同样会对其他元素产生影响。
布隆过滤器是一个优缺点都非常明显的数据结构,优点非常出色:速度足够快,内存消耗小,代码实现简单。但是缺点也很明显:不支持删除元素,会有误判的情况。这样特点鲜明的数据结构真的非常吸引人。
今天的文章就是这些,如果觉得有所收获,请顺手点个关注吧,你们的举手之劳对我来说很重要。