摘要:云堆栈的深度集成是释放云数据库力量的关键,华为云在实现这一目标方面处于领先地位,正如GaussDB(for MySQL)所证明的那样。
本文分享自华为云社区《近数据处理(NDP),为GaussDB(for MySQL)性能提升“加冕”》,作者: GaussDB 数据库。
在上一篇文章《首席科学家为您揭秘:GaussDB(for MySQL)云栈垂直集成的力量有多大》我们介绍了GaussDB(for MySQL)的体系架构,这篇文章我们将重点介绍GaussDB(for MySQL)如何将查询处理卸载到存储层,我们将这一特性称之为近数据处理(Near Data Processing),简称NDP。
NDP出现的契机
在计算节点实例上执行查询操作首先需要将数据页面加载到InnoDB缓冲池(buffer pool)。相对传统数据库使用本地存储,云数据库需要通过网络获取数据,因此从存储节点读取页面数据的延迟要高得多。相比社区版MySQL,GaussDB(for MySQL)支持并行查询,可通过多线程并行将数据读取到缓冲池中,但当表数据量较大(包含数百万甚至更多的数据行),分析查询需要扫描大量数据时,将所需数据全部加载到缓冲池中,IO成本将变得非常高。因此,我们需要一种更优的方法来解决此问题。
我们的解决方案是基于GaussDB(for MySQL) 计算节点与存储节点之间的紧密集成,将部分查询处理操作下推至靠近数据的分布式存储系统,数据库术语中称为算子下推。通过这种方式,我们可以利用多存储节点的总带宽。在云环境中,存储系统包含数百节点,我们希望充分利用存储系统的可扩展性,同时避免网络成为性能瓶颈点。NDP允许部分查询处理以大规模并行的方式在存储节点执行,并显著的减少网络IO。
NDP有诸多好处,包括:
- 利用多租户大规模分布式云存储系统,在多节点并行处理数据
- 显著减少网络IO,只返回满足WHERE条件的行(过滤)和查询涉及的列(投影)或聚合操作的结果,而不是将完整的数据页面从存储节点返回至计算节点
- 避免大数量扫描导致经常访问的数据页面从缓存池中移除
那么存储层是如何处理的呢?
算子下推通常适用于全表扫描、索引扫描、范围查询等场景。WHERE条件可下推至存储层,当前支持的数据类型包括:
- 数值类型(numeric, integer, float, double)
- 时间类型(date, time, timestamp)
- 字符串类型(char, varchar)等
算子下推可以与计算节点的并行查询完美结合,从概念上讲,一个查询首先在计算层(垂直扩展)拆分为多个worker线程并行处理,每个worker线程均可触发算子下推。由于分布式存储中数据分布的策略,每个worker线程的负载将分配至存储系统的多个节点上(水平扩展),每个存储节点都有线程池处理算子下推请求。
查询是否启用算子下推,是在查询优化阶段,优化器根据统计信息和执行计划自动决策的。此外用户还可以使用 hint 来控制查询操作是否开启算子下推。
算子下推可以很好地处理冷数据,然而,GaussDB(for MyQL)是一个OLTP系统,通常包含并发更新操作。当前计算下推实现,MVCC处理仅在计算节点进行,存储节点只处理可见的行,针对无法判断可见性的行,原样返回至计算节点,通过undo-log回放出对应的数据。
通过算子下推,我们将获得怎样的收益呢?
以TPC-H标准测试集(scale factor: 100)为例,CPU:16核,内存: 128GB,计算节点数据库缓冲池大小设置为80GB,采用冷数据进行验证。
下图展示了TPC-H Q6, Q12, Q14, Q15 4 个Query的查询结果,均有20-40倍的性能提升。以Q12为例,只开启NDP,借助分布式存储算力和网络IO缩减,性能提升5倍,同时在计算节点开启并行查询,又获得7倍性能提升,总体提升约35倍,这个提升效果是非常显著的。
本文中提到的这些功能都可在实际生产环境中使用,而这只是开始,随着我们将更多计算推送到存储层,更多的查询将从此优化中受益,我们可以期待更大的性能提升。
如何启用NDP?
开启NDP开关,对当前Session生效,优化器自动判断是否进行计算下推。
mysql> show variables like 'ndp_mode'; +---------------+-------+ | Variable_name | Value | +---------------+-------+ | ndp_mode | ON | +---------------+-------+ 1 row in set (0.00 sec) mysql> explain select count(*) from lineitem; +----+-------------+----------+------------+-------+---------------+---------+---------+------+-----------+----------+-------------------------------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+----------+------------+-------+---------------+---------+---------+------+-----------+----------+-------------------------------------------------------------------+ | 1 | SIMPLE | lineitem | NULL | index | NULL | PRIMARY | 8 | NULL | 594000899 | 100.00 | Using pushed NDP columns; Using pushed NDP aggregate; Using index | +----+-------------+----------+------------+-------+---------------+---------+---------+------+-----------+----------+-------------------------------------------------------------------+ 1 row in set, 1 warning (0.00 sec)
通过hint方式,使NDP对当前Query生效。
mysql> show variables like 'ndp_mode'; +---------------+-------+ | Variable_name | Value | +---------------+-------+ | ndp_mode | OFF | +---------------+-------+ 1 row in set (0.00 sec) mysql> explain select count(*) from lineitem; +----+-------------+----------+------------+-------+---------------+---------+---------+------+-----------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+----------+------------+-------+---------------+---------+---------+------+-----------+----------+-------------+ | 1 | SIMPLE | lineitem | NULL | index | NULL | PRIMARY | 8 | NULL | 594000899 | 100.00 | Using index | +----+-------------+----------+------------+-------+---------------+---------+---------+------+-----------+----------+-------------+ 1 row in set, 1 warning (0.00 sec) mysql> explain select/*+ ndp_pushdown() */ count(*) from lineitem; +----+-------------+----------+------------+-------+---------------+---------+---------+------+-----------+----------+-------------------------------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+----------+------------+-------+---------------+---------+---------+------+-----------+----------+-------------------------------------------------------------------+ | 1 | SIMPLE | lineitem | NULL | index | NULL | PRIMARY | 8 | NULL | 594000899 | 100.00 | Using pushed NDP columns; Using pushed NDP aggregate; Using index | +----+-------------+----------+------------+-------+---------------+---------+---------+------+-----------+----------+-------------------------------------------------------------------+ 1 row in set, 1 warning (0.00 sec)
挑战与今后方向
NDP有诸多好处,但它也有一些技术挑战需要我们解决。如分布式存储系统为多租户共享,为了避免不同租户对资源争抢使用,我们需要实现单租户级的资源管控。另外是优化器决策使用NDP的时机,需结合触发网络IO读取的数据量以及已缓存在缓冲池中的数据量综合考虑。
GaussDB(for MySQL)是一款云原生数据库,该体系结构支持极其强大和灵活的NDP框架。未来,我们计划利用此框架不仅仅是做查询处理,还将进一步扩展存储层中的数据库功能,这些功能可以与查询下推结合使用。我们相信,云堆栈的深度集成是释放云数据库力量的关键,华为云在实现这一目标方面处于领先地位,正如GaussDB(for MySQL)所证明的那样。
请大家保持关注,我们后续将会给大家带来更多精彩技术分享。也欢迎大家前往华为云官网,了解更多GaussDB(for MySQL)详情:https://www.huaweicloud.com/product/gaussdb_mysql.html
标签:存储,GaussDB,下推,MySQL,NDP,节点
来源: https://www.cnblogs.com/huaweiyun/p/15796889.html
本站声明:
1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。