数据库
首页 > 数据库> > 【MongoDB学习笔记】-使用 MongoDB 进行 CRUD 操作(上)

【MongoDB学习笔记】-使用 MongoDB 进行 CRUD 操作(上)

作者:互联网

作者:幻好

来源:恒生LIGHT云社区

概述

MongoDB 是一种持久化的面向文档的数据库,用于以文档的形式存储和处理数据。
在这里插入图片描述
与其他的数据库管理系统一样,MongoDB 可以通过四种基本类型的数据操作来管理数据并与数据交互:

以上四种操作统称为 CRUD 操作,本文主要讲解这四种操作的原理和命令等相关知识。

具体操作

连接 MongoDB Server

首先在操作前,先连接到本地或远程可使用的 MongoDB Server ,如下图:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ad1BqIIy-1640060734067)(https://developer.hs.net/storage/attachments/2021/12/12/FvAp6ovUxE6qboTq5fvNik6HM3MkoSDBuUEXkPHK_thumb.png “4132”)]

连接 MongoDB 数据库成功后,就可以开始创建新文档(documents)。

创建文档

首先先重点介绍如何在 MongoDB 中创建数据文档(documents

比如创建一个东方明珠景点对象,可能相关信息有所在国家,城市,坐标等:

{
    "name": "东方明珠",
    "country": "中国",
    "city": "上海",
    "location": {
        "lat": 121.537,
        "lng": 31.258
    }
}

MongoDB 的文档是用 BSON 编写的, BSONJSON 的二进制形式,是方便可读的数据格式。 BSONJSON 文档中的所有数据都表示为采用 field: value 形式的字段和值对。

该文档由四个字段组成,首先是景点的名称,其次是城市和国家。所有这三个字段都包含字符串。最后一个字段坐标:location,是一个嵌套文档,详细说明了景点的位置坐标。

insertOne

使用 insertOne 方法将此文档插入到名为 spots 的新集合中。顾名思义,insertOne 用于创建单个文档,而不是一次创建多个文档。

在命令行中,运行以下指令:

db.spots.insertOne(
    {
        "name": "东方明珠",
        "country": "中国",
        "city": "上海",
        "location": {
            "lat": 121.537,
            "lng": 31.258
        }
    }
)

# 输出
{
    "acknowledged" : true,
    "insertedId" : ObjectId("61b5d4963d2fc20a8483df1a")
}

在执行此 insertOne 方法之前,需要保证未创建 spots 集合。

通过执行这个示例 insertOne() 方法,它不仅会将文档插入到集合中,还会自动创建集合。该操作的输出将通知您它已成功执行,并提供它为新文档自动生成的 ObjectId:61b5d4963d2fc20a8483df1a

在 MongoDB 中,集合中的每个文档都必须有一个唯一的 _id 字段作为主键,所以 _id 字段是唯一的。如果新文档插入时为设置 _id 字段,MongoDB 将自动生成一个对象标识符(以 ObjectId 对象的形式)作为 _id 字段的值。

在文档创建后,可以通过下面命令检查 spots 集合中的对象计数来验证文档是否已插入:

> db.spots.count()

# 输出:
1

insertMany

如果需要创建多个文档,如果通过 insertOne 方法一个一个地插入文档,会变的非常麻烦。所以, MongoDB 提供了 insertMany 方法,您可以使用该方法在单个操作中插入多个文档。

运行以下示例命令,该命令使用 insertMany 方法将新的景点信息插入 spots 集合中:

db.spots.insertMany([
  {"name": "故宫", "city": "北京", "country": "中国", "gps": { "lat": 116.403, "lng": 39.924 }},
  {"name": "长城", "city": "北京", "country": "中国", "gps": { "lat": 106.384, "lng": 39.031 }},
  {"name": "白宫", "city": "华盛顿", "country": "美国", "gps": { "lat": 116.652, "lng": 40.121 }},
  {"name": "伦敦之眼", "city": "伦敦", "country": "英国", "gps": { "lat": 116.348, "lng": 34.430 }}
])

请注意围绕六个文档的方括号 ([ ]),这些括号表示文档数组。在方括号内,多个对象可以一个接一个出现,以逗号分隔。在 MongoDB 方法需要多个对象的情况下,可以像这样以数组的形式提供对象列表。

MongoDB 将响应多个对象标识符,每个新插入的对象一个:

# 输出
{
        "acknowledged" : true,
        "insertedIds" : [
                ObjectId("61b5d7ba3d2fc20a8483df1b"),
                ObjectId("61b5d7ba3d2fc20a8483df1c"),
                ObjectId("61b5d7ba3d2fc20a8483df1d"),
                ObjectId("61b5d7ba3d2fc20a8483df1e")
        ]
}

您可以通过检查 spots 集合中的对象个数,来验证文档是否已插入:

> db.spots.count()
# 输出:
5

查询文档

通过创建操作,spots 集合中存储了一些文档,可以查询数据库以检索这些文档并读取它们的数据。此步骤首先概述如何查询给定集合中的所有文档,然后描述如何使用过滤器缩小检索到的文档列表。

find

完成上一步后,可以使用 find() 方法通过单个操作检索所有文档:

> db.spots.find()

# 输出:
{ "_id" : ObjectId("61b5d4963d2fc20a8483df1a"), "name" : "东方明珠", "country" : "中国", "city" : "上海", "location" : { "lat" : 121.537, "lng" : 31.258 } }
{ "_id" : ObjectId("61b5d7ba3d2fc20a8483df1b"), "name" : "故宫", "city" : "北京", "country" : "中国", "gps" : { "lat" : 116.403, "lng" : 39.924 } }
{ "_id" : ObjectId("61b5d7ba3d2fc20a8483df1c"), "name" : "长城", "city" : "北京", "country" : "中国", "gps" : { "lat" : 106.384, "lng" : 39.031 } }
{ "_id" : ObjectId("61b5d7ba3d2fc20a8483df1d"), "name" : "白宫", "city" : "华盛顿", "country" : "美国", "gps" : { "lat" : 116.652, "lng" : 40.121 } }
{ "_id" : ObjectId("61b5d7ba3d2fc20a8483df1e"), "name" : "伦敦之眼", "city" : "伦敦", "country" : "英国", "gps" : { "lat" : 116.348, "lng" : 34.43 } }

此方法在不带任何参数的情况下使用时,不应用任何过滤并要求 MongoDB 返回指定集合中可用的所有对象: spots。

需要注意,这些对象中的每一个都有一个您未定义的 _id 属性。如前所述,_id 字段用作它们各自文档的主键,并且是在上一步中运行 insertMany 方法时自动创建的。

为了使 find() 方法的输出更具可读性,您可以使用其 pretty 方法打印功能,如下所示:

db.spots.find().pretty()

# 输出:
{
        "_id" : ObjectId("61b5d4963d2fc20a8483df1a"),
        "name" : "东方明珠",
        "country" : "中国",
        "city" : "上海",
        "location" : {
                "lat" : 121.537,
                "lng" : 31.258
        }
}
{
        "_id" : ObjectId("61b5d7ba3d2fc20a8483df1b"),
        "name" : "故宫",
        "city" : "北京",
        "country" : "中国",
        "gps" : {
                "lat" : 116.403,
                "lng" : 39.924
        }
}
以下 find() 方法通过接受查询过滤器文档作为参数来返回单个对象。查询过滤器文档遵循与插入到集合中的文档相同的结构,由字段和值组成,但它们用于过滤查询结果。

使用的查询过滤器文档包括 _id 字段,以对象标识符作为值,查询指定的对象:

```shell
db.spots.find({"_id": ObjectId("61b5d4963d2fc20a8483df1a")}).pretty()

# 输出:
{
        "_id" : ObjectId("61b5d4963d2fc20a8483df1a"),
        "name" : "东方明珠",
        "country" : "中国",
        "city" : "上海",
        "location" : {
                "lat" : 121.537,
                "lng" : 31.258
        }
}

也可以在文档中通过其他字段,进行有效过滤:

db.spots.find({"country": "中国"}).pretty()

# 输出:
{
        "_id" : ObjectId("61b5d4963d2fc20a8483df1a"),
        "name" : "东方明珠",
        "country" : "中国",
        "city" : "上海",
        "location" : {
                "lat" : 121.537,
                "lng" : 31.258
        }
}
{
        "_id" : ObjectId("61b5d7ba3d2fc20a8483df1b"),
        "name" : "故宫",
        "city" : "北京",
        "country" : "中国",
        "gps" : {
                "lat" : 116.403,
                "lng" : 39.924
        }
}
{
        "_id" : ObjectId("61b5d7ba3d2fc20a8483df1c"),
        "name" : "长城",
        "city" : "北京",
        "country" : "中国",
        "gps" : {
                "lat" : 106.384,
                "lng" : 39.031
        }
}

查询过滤器文档非常强大和灵活,能够帮助我们高效的查询数据。

总结

MongoDB 提供了一个强大的查询系统,允许根据复杂的标准精确选择感兴趣的文档,后续会继续对于MongoDB的使用技巧进行详细分享。

通过学习本文笔记,能够使我们对mongo的基本CRUD操作,快速入门,当然学习完之后还需自己动手实践。


想向技术大佬们多多取经?开发中遇到的问题何处探讨?如何获取金融科技海量资源?

恒生LIGHT云社区,由恒生电子搭建的金融科技专业社区平台,分享实用技术干货、资源数据、金融科技行业趋势,拥抱所有金融开发者。

扫描下方小程序二维码,加入我们!

标签:name,ObjectId,MongoDB,CRUD,笔记,文档,country,lng,id
来源: https://blog.csdn.net/weixin_44433834/article/details/122059376