数据库
首页 > 数据库> > SQL训练营--Task05:窗口函数

SQL训练营--Task05:窗口函数

作者:互联网

本笔记为阿里云天池龙珠计划SQL训练营的学习内容,链接为:https://tianchi.aliyun.com/specials/promotion/aicampsql

1 窗口函数概念

窗口函数也称为OLAP函数。OLAP 是OnLine AnalyticalProcessing 的简称,意思是对数据库数据进行实时分析处理。

为了便于理解,称之为窗口函数。常规的SELECT语句都是对整张表进行查询,而窗口函数可以让我们有选择的去某一部分数据进行汇总、计算和排序。

窗口函数的通用形式:

<窗口函数> OVER ([PARTITION BY <列名>]
                     ORDER BY <排序用列名>)  

[]中的内容可以省略。
窗口函数最关键的是搞明白关键字PARTITON BY
*ORDER BY******的作用。

PARTITON BY是用来分组,即选择要看哪个窗口,类似于GROUP BY 子句的分组功能,但是PARTITION BY 子句并不具备GROUP BY 子句的汇总功能,并不会改变原始表中记录的行数。

ORDER BY是用来排序,即决定窗口内,是按那种规则(字段)来排序的。

举个栗子:

SELECT product_name
       ,product_type
       ,sale_price
       ,RANK() OVER (PARTITION BY product_type
                         ORDER BY sale_price) AS ranking
  FROM product  

得到的结果是:

图片

我们先忽略生成的新列 - [ranking], 看下原始数据在PARTITION BY 和 ORDER BY 关键字的作用下发生了什么变化。

PARTITION BY 能够设定窗口对象范围。本例中,为了按照商品种类进行排序,我们指定了product_type。即一个商品种类就是一个小的"窗口"。

ORDER BY 能够指定按照哪一列、何种顺序进行排序。为了按照销售单价的升序进行排列,我们指定了sale_price。此外,窗口函数中的ORDER BY与SELECT语句末尾的ORDER BY一样,可以通过关键字ASC/DESC来指定升序/降序。省略该关键字时会默认按照ASC,也就是

升序进行排序。本例中就省略了上述关键字 。

图片

2 专用窗口函数

计算排序时,如果存在相同位次的记录,则会跳过之后的位次。

例)有 3 条记录排在第 1 位时:1 位、1 位、1 位、4 位……

同样是计算排序,即使存在相同位次的记录,也不会跳过之后的位次。

例)有 3 条记录排在第 1 位时:1 位、1 位、1 位、2 位……

赋予唯一的连续位次。

例)有 3 条记录排在第 1 位时:1 位、2 位、3 位、4 位

3 聚合函数在窗口函数上使用

聚合函数在开窗函数中的使用方法和之前的专用窗口函数一样,只是出来的结果是一个累计的聚合函数值。

运行以下代码:

SELECT  product_id
       ,product_name
       ,sale_price
       ,SUM(sale_price) OVER (ORDER BY product_id) AS current_sum
       ,AVG(sale_price) OVER (ORDER BY product_id) AS current_avg  
  FROM product;  

图片

图片

可以看出,聚合函数结果是,按我们指定的排序,这里是product_id,当前所在行及之前所有的行的合计或均值。即累计到当前行的聚合。

MAX(sale_price) OVER (ORDER BY product_id)
--按照 product_id 升序排列,计算出截止当前的最大 sale_price 。

4 移动平均

在上面提到,聚合函数在窗口函数使用时,计算的是累积到当前行的所有的数据的聚合。 实际上,还可以指定更加详细的汇总范围。该汇总范围成为框架(frame)。

语法

<窗口函数> OVER (ORDER BY <排序用列名>
                 ROWS n PRECEDING )  
                 
<窗口函数> OVER (ORDER BY <排序用列名>
                 ROWS BETWEEN n PRECEDING AND n FOLLOWING)

PRECEDING(“之前”), 将框架指定为 “截止到之前 n 行”,加上自身行

FOLLOWING(“之后”), 将框架指定为 “截止到之后 n 行”,加上自身行

BETWEEN 1 PRECEDING AND 1 FOLLOWING,将框架指定为 “之前1行” + “之后1行” + “自身”

执行以下代码:

SELECT  product_id
       ,product_name
       ,sale_price
       ,AVG(sale_price) OVER (ORDER BY product_id
                               ROWS 2 PRECEDING) AS moving_avg
       ,AVG(sale_price) OVER (ORDER BY product_id
                               ROWS BETWEEN 1 PRECEDING 
                                        AND 1 FOLLOWING) AS moving_avg  
  FROM product  

执行结果:

注意观察框架的范围。

ROWS 2 PRECEDING:

图片

ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING:

图片

5 分组求和

常规的GROUP BY 只能得到每个分类的小计,有时候还需要计算分类的合计,可以用 ROLLUP关键字。

SELECT  product_type
       ,regist_date
       ,SUM(sale_price) AS sum_price
  FROM product
 GROUP BY product_type, regist_date WITH ROLLUP  

得到的结果为:

图片

图片

这里ROLLUP 对product_type, regist_date两列进行合计汇总。结果实际上有三层聚合,如下图 模块3是常规的 GROUP BY 的结果,需要注意的是衣服 有个注册日期为空的,这是本来数据就存在日期为空的,不是对衣服类别的合计; 模块2和1是 ROLLUP 带来的合计,模块2是对产品种类的合计,模块1是对全部数据的总计。

ROLLUP 可以对多列进行汇总求小计和合计。

图片

标签:product,窗口,函数,--,price,sale,SQL,Task05,ORDER
来源: https://blog.csdn.net/poikm89898989/article/details/118693863