FlinkSQL流表与维表join 和 双流join
作者:互联网
维表是数仓中的一个概念,维表中的维度属性是观察数据的角度,补充事实表的信息。在实时数仓中,同样也有维表与事实表的概念,其中事实表通常为kafka的实时流数据,维表通常存储在外部设备中(比如MySQL,HBase)。对于每条流式数据,可以关联一个外部维表数据源,为实时计算提供数据关联查询。维表可能是会不断变化的,在维表JOIN时,需指明这条记录关联维表快照的时刻。
本文主要介绍
- 1、流表和维表的区别
- 2、流表和维表join的数据流转解析
- 3、双流join的数据流转解析
- 4、代码示例和场景
1、流表和维表的区别:
流表:实时流数据映射成的表,在join查询中,每来一条数据都会主动去维表中查询是否有匹配的数据
维表:维度信息表,一般在外部存储(Redis,Mysql中)维表是被动查询的,目前Flink SQL的维表JOIN仅支持对当前时刻维表快照的关联
2、流表和维表join:
3、流表和流表关联(双流jion):
4、代码示例(FlinkSQL)
流表和维表join
场景:
流表是用户的行为数据,记录用户学习内容,学习时长等信息
维表是学生信息数据(姓名,手机号)
如果cpt表有一条实时流数据A同学的学习记录过来,此时student表还没有这个学生的信息,获取到的姓名和手机号就是null。当student表更新有A的信息,后续的实时流数据能关联获取到A的姓名和手机号,但是student表更新之前的实时流数据依旧是获取不到的(这点需要注意)
sql
创建kafka数据源,流表
table_env.execute_sql(
CREATE TABLE cpt(
content_id string,
student_uid string,
course_id string,
content_type int,
study_time bigint,
chapter_id string,
section_id string,
progress int,
updated_at string,
created_at string,
playback_time int,
ptime AS PROCTIME()
) WITH (
'connector' = 'kafka',
'topic' = 'stream_content_study_progress',
'properties.bootstrap.servers' = 'localhost:9092',
'properties.group.id' = 't1',
'scan.startup.mode'='earliest-offset',
'format' = 'json'
)
创建Redis维表
table_env.execute_sql(
create table student(
uid string,
mobile string,
name string,
PRIMARY KEY (uid) NOT ENFORCED
)with(
'connector'='redis',
'ip'='localhost',
'password'='',
'port'='6379',
'table'='user',
'database'='1'
)
流表和维表join
table_env.execute_sql(
insert into res
select
t.student_uid as uid,
student.mobile as mobile,
t.course_id as courseId,
t.study_time as viewingTime,
unix_timestamp(t.updated_at)*1000 as updateTime,
from cpt as t
left join student for system_time as of t.ptime on t.student_uid=student.uid
)
流表和流表join
场景:上面描述的场景,通过双流join能很好的解决。两个都是流表,两个表当中的任何一个表来数据时,都会去另一个表中查询是否有匹配的数据(包含历史)
table_env.execute_sql(
CREATE TABLE cpt(
content_id string,
student_uid string,
course_id string,
content_type int,
study_time bigint,
chapter_id string,
section_id string,
progress int,
updated_at string,
created_at string,
playback_time int,
ptime AS PROCTIME()
) WITH (
'connector' = 'kafka',
'topic' = 'stream_content_study_progress',
'properties.bootstrap.servers' = 'localhost:9092',
'properties.group.id' = 't1',
'scan.startup.mode'='earliest-offset',
'format' = 'json'
)
创建流表,其实是维度表
table_env.execute_sql(
create table student(
uid string,
mobile string,
name string,
PRIMARY KEY (uid) NOT ENFORCED
)with(
'connector' = 'kafka',
'topic' = 'stream_student',
'properties.bootstrap.servers' = 'localhost:9092',
'properties.group.id' = 't1',
'scan.startup.mode'='earliest-offset',
'format' = 'json'
)
双流join
table_env.execute_sql(
insert into res
select
t.student_uid as uid,
student.mobile as mobile,
t.course_id as courseId,
t.study_time as viewingTime,
unix_timestamp(t.updated_at)*1000 as updateTime,
from cpt as t
left join student t.student_uid=student.uid
)
标签:join,string,流表,FlinkSQL,student,维表,uid 来源: https://blog.csdn.net/wangxingxingalulu/article/details/118514545