实验二 K-近邻算法及应用
作者:互联网
博客班级 | AHPU机器学习 |
---|---|
作业要求 | https://edu.cnblogs.com/campus/ahgc/machinelearning/homework/12004 |
作业目标 | <K-近邻算法及应用 > |
学号 | 3180701113 |
一、【实验目的】
1.理解K-近邻算法原理,能实现算法K近邻算法;
2.掌握常见的距离度量方法;
3.掌握K近邻树实现算法;
4.针对特定应用场景及数据,能应用K近邻解决实际问题。
二、【实验内容】
1.实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。
2.实现K近邻树算法;
3.针对iris数据集,应用sklearn的K近邻算法进行类别预测。
4.针对iris数据集,编制程序使用K近邻树进行类别预测。
三、实验报告要求】
1.对照实验内容,撰写实验过程、算法及测试结果;
2.代码规范化:命名规则、注释;
3.分析核心算法的复杂度;
4.查阅文献,讨论K近邻的优缺点;
5.举例说明K近邻的应用场景。
四、实验内容及结果
☆实验代码
Language:
import math
#导入数学运算函数
from itertools import combinations
Language:
#计算欧式距离
def L(x, y, p=2):
# x1 = [1, 1], x2 = [5,1]
if len(x) == len(y) and len(x) > 1:
# 当两个特征的维数相等时,并且维度大于1时。
sum = 0
# 目前总的损失函数值为0
for i in range(len(x)): # 用range函数来遍历x所有的维度,x与y的维度相等。
sum += math.pow(abs(x[i] - y[i]), p)
# math.pow( x, y )函数是计算x的y次方。
return math.pow(sum, 1/p)# 距离公式。
else:
return 0
# 课本例3.1
x1 = [1, 1]
x2 = [5, 1]
x3 = [4, 4]
Language:
# 计算x1与x2和x3之间的距离
for i in range(1, 5): # i从1到4
r = { '1-{}'.format(c):L(x1, c, p=i) for c in [x2, x3]} # 创建一个字典
print(min(zip(r.values(), r.keys()))) # 当p=i时选出x2和我x3中距离x1最近的点
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
# data 输入数据
iris = load_iris() # 获取python中鸢尾花Iris数据集
df = pd.DataFrame(iris.data, columns=iris.feature_names) # 将数据集使用DataFrame建表
df['label'] = iris.target # 将表的最后一列作为目标列
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label'] # 定义表中每一列
# data = np.array(df.iloc[:100, [0, 1, -1]])
df#查看已建立的表格
#绘制散点图
plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()
Language:
data = np.array(df.iloc[:100, [0, 1, -1]])
#按行索引,取出第0列第1列和最后一列,即取出sepal长度、宽度和标签
X, y = data[:,:-1], data[:,-1]
#X为sepal length,sepal width y为标签
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# train_test_split函数用于将矩阵随机划分为训练子集和测试子集
Language:
#定义模型
class KNN:
def __init__(self, X_train, y_train, n_neighbors=3, p=2): # 初始化数据,neighbor表示邻近点,p为欧氏距离
"""
parameter: n_neighbors 临*点个数
parameter: p 距离度量
"""
self.n = n_neighbors#临*点个数
self.p = p#距离度量
self.X_train = X_train
self.y_train = y_train
def predict(self, X):
# 取出n个点,放入空的列表,列表中存放预测点与训练集点的距离及其对应标签
# 取距离最小的k个点:先取前k个,然后遍历替换
# knn_list存“距离”和“label”
knn_list = []
for i in range(self.n):
#np.linalg.norm 求范数
dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
knn_list.append((dist, self.y_train[i]))
#再取出训练集剩下的点,然后与n_neighbor个点比较大叫,将距离大的点更新
#保证knn_list列表中的点是距离最小的点
for i in range(self.n, len(self.X_train)):
max_index = knn_list.index(max(knn_list, key=lambda x: x[0]))
dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
#g更新最*邻中距离比当前点远的点
if knn_list[max_index][0] > dist:
knn_list[max_index] = (dist, self.y_train[i])
# 统计
knn = [k[-1] for k in knn_list]
#counter为计数器,按照标签计数
count_pairs = Counter(knn)
#排序
max_count = sorted(count_pairs, key=lambda x:x)[-1]
return max_count
#预测的正确率
def score(self, X_test, y_test):
right_count = 0
n = 10
for X, y in zip(X_test, y_test):
label = self.predict(X)
if label == y:
right_count += 1
return right_count / len(X_test)
clf = KNN(X_train, y_train)#调用knn算法进行计算
clf.score(X_test, y_test)#计算正确率
test_point = [6.0, 3.0]#预测点
print('Test Point: {}'.format(clf.predict(test_point)))#预测结果
plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')#打印预测点
plt.plot(test_point[0], test_point[1], 'bo', label='test_point')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()
from sklearn.neighbors import KNeighborsClassifier
clf_sk = KNeighborsClassifier()
clf_sk.fit(X_train, y_train)
clf_sk.score(X_test, y_test)
Language:
# kd-tree每个结点中主要包含的数据结构如下
class KdNode(object):
def __init__(self, dom_elt, split, left, right):
self.dom_elt = dom_elt #结点的父结点
self.split = split #划分结点
self.left = left #左结点
self.right = right # 右结点
class KdTree(object):
def __init__(self, data):
k = len(data[0]) # 数据维度
def CreateNode(split, data_set): # 按第split维划分数据集exset创建KdNode
if not data_set: # 数据集为空
return None
# key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较
# operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为需要获取的数据在对象
#data_set.sort(key=itemgetter(split)) # 按要进行分割的那一维数据排序
data_set.sort(key=lambda x: x[split])
split_pos = len(data_set) // 2 # //为Python中的整数除法
median = data_set[split_pos] # 中位数分割点
split_next = (split + 1) % k # cycle coordinates
# 递归的创建kd树
return KdNode(median, split,
CreateNode(split_next, data_set[:split_pos]), # 创建左子树
CreateNode(split_next, data_set[split_pos + 1:])) # 创建右子树
self.root = CreateNode(0, data) # 从第0维分量开始构建kd树,返回根节点
# KDTree的前序遍历
def preorder(root):
print (root.dom_elt)
if root.left: # 节点不为空
preorder(root.left)
if root.right:
preorder(root.right)
# 对构建好的kd树进行搜索,寻找与目标点最近的样本点:
from math import sqrt
from collections import namedtuple
# 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数
result = namedtuple("Result_tuple", "nearest_point nearest_dist nodes_visited")
def find_nearest(tree, point):
k = len(point) # 数据维度
def travel(kd_node, target, max_dist):
if kd_node is None:
return result([0] * k, float("inf"), 0) # python中用float("inf")和float("-inf")表示正负
nodes_visited = 1
s = kd_node.split # 进行分割的维度
pivot = kd_node.dom_elt # 进行分割的“轴”
if target[s] <= pivot[s]: # 如果目标点第s维小于分割轴的对应值(目标离左子树更近)
nearer_node = kd_node.left # 下一个访问节点为左子树根节点
further_node = kd_node.right # 同时记录下右子树
else: # 目标离右子树更近
nearer_node = kd_node.right # 下一个访问节点为右子树根节点
further_node = kd_node.left
temp1 = travel(nearer_node, target, max_dist) # 进行遍历找到包含目标点的区域
nearest = temp1.nearest_point # 以此叶结点作为“当前最近点”
dist = temp1.nearest_dist # 更新最近距离
nodes_visited += temp1.nodes_visited
if dist < max_dist:
max_dist = dist # 最近点将在以目标点为球心,max_dist为半径的超球体内
temp_dist = abs(pivot[s] - target[s]) # 第s维上目标点与分割超平面的距离
if max_dist < temp_dist: # 判断超球体是否与超平面相交
return result(nearest, dist, nodes_visited) # 不相交则可以直接返回,不用继续判断
#----------------------------------------------------------------------
# 计算目标点与分割点的欧氏距离
temp_dist = sqrt(sum((p1 - p2) ** 2 for p1, p2 in zip(pivot, target)))
if temp_dist < dist: # 如果“更近”
nearest = pivot # 更新最近点
dist = temp_dist # 更新最近距离
max_dist = dist # 更新超球体半径
# 检查另一个子结点对应的区域是否有更近的点
temp2 = travel(further_node, target, max_dist)
nodes_visited += temp2.nodes_visited
if temp2.nearest_dist < dist: # 如果另一个子结点内存在更近距离
nearest = temp2.nearest_point # 更新最近点
dist = temp2.nearest_dist # 更新最近距离
return result(nearest, dist, nodes_visited)
return travel(tree.root, point, float("inf")) # 从根节点开始递归
data = [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]
kd = KdTree(data)
preorder(kd.root)
from time import clock
from random import random
# 产生一个k维随机向量,每维分量值在0~1之间
def random_point(k):
return [random() for _ in range(k)]
# 产生n个k维随机向量
def random_points(k, n):
return [random_point(k) for _ in range(n)]
ret = find_nearest(kd, [3,4.5])
print (ret)
N = 400000
t0 = clock()
kd2 = KdTree(random_points(3, N)) # 构建包含四十万个3维空间样本点的kd树
ret2 = find_nearest(kd2, [0.1,0.5,0.8]) # 四十万个样本点中寻找离目标最近的点
t1 = clock()
print ("time: ",t1-t0, "s")
print (ret2)
☆运行截图
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
五、实验小结
K近邻算法优缺点:
算法优点:
(1)简单,易于理解,易于实现,无需估计参数。
(2)训练时间为零。它没有显示的训练,不像其它有监督的算法会用训练集train一个模型(也就是拟合一个函数),然后验证集或测试集用该模型分类。KNN只是把样本保存起来,收到测试数据时再处理,所以KNN训练时间为零。
(3)KNN可以处理分类问题,同时天然可以处理多分类问题,适合对稀有事件进行分类。
(4)特别适合于多分类问题(multi-modal,对象具有多个类别标签), KNN比SVM的表现要好。
(5)KNN还可以处理回归问题,也就是预测。
(6)和朴素贝叶斯之类的算法比,对数据没有假设,准确度高,对异常点不敏感。
算法缺点:
(1)计算量太大,尤其是特征数非常多的时候。每一个待分类文本都要计算它到全体已知样本的距离,才能得到它的第K个最近邻点。
(2)可理解性差,无法给出像决策树那样的规则。
(3)样本不平衡的时候,对稀有类别的预测准确率低。当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。
(4)对训练数据依赖度特别大,对训练数据的容错性太差。如果训练数据集中,有一两个数据是错误的,刚刚好又在需要分类的数值的旁边,这样就会直接导致预测的数据的不准确。
K近邻算法的应用场景:
k近邻算法应该是目前工业上还会使用最为简单的算法,并且使用起来也很简单、方便,但是有个前提是数据量不能过大,更不能使用有维数诅咒的数据集。
标签:近邻,sepal,算法,train,实验,split,test,data,self 来源: https://www.cnblogs.com/ac36/p/14797077.html