[opencv完整项目详解] 传统图像算法解决路标的检测和识别
作者:互联网
前言:
这是数字图像课程的大作业,老师要求不可以采用深度学习的方法检测和识别特定的路标,只能采用传统的图像算法提取特征从而检测出特定的车牌.
完整代码:
#include <iostream>
#include <opencv2/opencv.hpp>
#include <math.h>
using namespace std;
using namespace cv;
#define PI 3.1415926
struct BGR // 定义BGR结构体
{
uchar b;
uchar g;
uchar r;
};
struct HSV // 定义HSV结构体
{
int h;
double s;
double v;
};
bool IsEquals(double val1, double val2)
{
return fabs(val1 - val2) < 0.001;
}
// 将RGB格式转换为HSV格式
void BGR2HSV(BGR &bgr, HSV &hsv)
{
double b, g, r;
double h, s, v;
double min, max;
double delta;
b = bgr.b / 255.0;
g = bgr.g / 255.0;
r = bgr.r / 255.0;
if (r > g)
{
max = MAX(r, b);
min = MIN(g, b);
}
else
{
max = MAX(g, b);
min = MIN(r, b);
}
v = max;
delta = max - min;
if (IsEquals(max, 0))
{
s = 0.0;
}
else
{
s = delta / max;
}
if (max == min)
{
h = 0.0;
}
else
{
if (IsEquals(r, max) && g >= b)
{
h = 60 * (g - b) / delta + 0;
}
else if (IsEquals(r, max) && g < b)
{
h = 60 * (g - b) / delta + 360;
}
else if (IsEquals(g, max))
{
h = 60 * (b - r) / delta + 120;
}
else if (IsEquals(b, max))
{
h = 60 * (r - g) / delta + 240;
}
}
hsv.h = (int)(h + 0.5);
hsv.h = (hsv.h > 359) ? (hsv.h - 360) : hsv.h;
hsv.h = (hsv.h < 0) ? (hsv.h + 360) : hsv.h;
hsv.s = s;
hsv.v = v;
}
// 填充算法(漫水天填充)
void fillHole(const Mat srcBw, Mat &dstBw)
{
Size m_Size = srcBw.size();
Mat Temp = Mat::zeros(m_Size.height + 2, m_Size.width + 2, srcBw.type());
srcBw.copyTo(Temp(Range(1, m_Size.height + 1), Range(1, m_Size.width + 1)));
cv::floodFill(Temp, Point(0, 0), Scalar(255));
Mat cutImg;
Temp(Range(1, m_Size.height + 1), Range(1, m_Size.width + 1)).copyTo(cutImg);
dstBw = srcBw | (~cutImg);
}
//判断rect1与rect2是否有交集
bool isInside(Rect rect1, Rect rect2)
{
Rect t = rect1&rect2;
if (rect1.area() > rect2.area())
{
return false;
}
else
{
if (t.area() != 0)
return true;
}
}
int main()
{
// 载入检测图片
Mat srcImg = imread("./src/3.jpg");
if (srcImg.empty())
{
cout << "找不到相关图像,检查路径" << endl;
return 0;
}
// 限定图像长宽
int width = srcImg.cols;//图像宽度
int height = srcImg.rows;//图像高度
if (width > 1920 || height >1080)
{
float factor = min((float)1920 / width, (float)1080 / height);
resize(srcImg, srcImg, Size(factor*width, factor*height));
width *= factor;
height *= factor;
}
//cout << "width=" << width << ",height=" << height << endl;
//imshow("srcImg", srcImg);
//waitKey(0);
// 第一步:分割红色颜色色块
Mat matRgb = Mat::zeros(srcImg.size(), CV_8UC1);
int x, y; //循环
for (y = 0; y < height; y++)
for (x = 0; x < width; x++)
{
// 获取BGR值
BGR bgr;
bgr.b = srcImg.at<Vec3b>(y, x)[0];
bgr.g = srcImg.at<Vec3b>(y, x)[1];
bgr.r = srcImg.at<Vec3b>(y, x)[2];
HSV hsv;
BGR2HSV(bgr, hsv); // bgr转hsv
//红色范围
if ((hsv.h >= 135 * 2 && hsv.h <= 180 * 2 || hsv.h >= 0 && hsv.h <= 10 * 2) && hsv.s * 255 >= 16
&& hsv.s * 255 <= 255 && hsv.v * 255 >= 46 && hsv.v * 255 <= 255)
{
matRgb.at<uchar>(y, x) = 255;
}// if
}// for
// 第二步:去噪相关处理
medianBlur(matRgb, matRgb, 3);// 中值滤波
medianBlur(matRgb, matRgb, 5);// 中值滤波
Mat element = getStructuringElement(MORPH_ELLIPSE, Size(2 * 1 + 1, 2 * 1 + 1), Point(1, 1));
Mat element1 = getStructuringElement(MORPH_ELLIPSE, Size(2 * 3 + 1, 2 * 3 + 1), Point(3, 3));
erode(matRgb, matRgb, element);//腐蚀
dilate(matRgb, matRgb, element1);//膨胀
// 第三步:填充
fillHole(matRgb, matRgb);//填充
//imshow("fillHole", matRgb);
//waitKey(0);
// 第四步:找轮廓
vector<vector<Point>>contours; //轮廓
vector<Vec4i> hierarchy;//分层
findContours(matRgb, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));//寻找轮廓
vector<vector<Point>> contours_poly(contours.size()); //近似后的轮廓点集
vector<Rect> boundRect(contours.size()); //包围点集的最小矩形vector
// 第五步:画轮廓
for (int i = 0; i < contours.size(); i++)
{
approxPolyDP(Mat(contours[i]), contours_poly[i], 3, true); //对多边形曲线做适当近似,contours_poly[i]是输出的近似点集
boundRect[i] = boundingRect(Mat(contours_poly[i])); //计算并返回包围轮廓点集的最小矩形
}
// 第六步:对提取出的轮廓进行去噪,筛选出交通标志
Mat drawing = Mat::zeros(matRgb.size(), CV_8UC3);
Mat imageContours1 = Mat::zeros(matRgb.size(), CV_8UC1); //最小外结圆画布
vector<Mat> vec_roi; // 存储筛选出的交通标志的图像信息
vector<Rect> vec_rect; // 存储交通标志相对于原图的roi区域
for (int i = 0; i < contours.size(); i++)
{
Rect rect = boundRect[i];
//1. 若轮廓矩形内部还包含着矩形,则将被包含的小矩形取消
bool inside = false;
for (int j = 0; j < contours.size(); j++)
{
Rect t = boundRect[j];
if (rect == t)
continue;
else if (isInside(rect, t))
{
inside = true;
break;
}
}// for
if (inside)
continue;
//2.轮廓面积筛选
float Area = (float)rect.width * (float)rect.height;
float dConArea = (float)contourArea(contours[i]);
float dConLen = (float)arcLength(contours[i], 1);
if (dConArea < 300)
continue;
//3.高宽比筛选
float ratio = (float)rect.width / (float)rect.height;
if (ratio > 1.3 || ratio < 0.4)
continue;
//4.圆形外观筛选
Point2f center; float radius;
minEnclosingCircle(contours[i], center, radius);
double area_minEnclosingCircle = radius*radius*PI;
double area_contour = contourArea(contours[i]); //计算轮廓面积
if (area_contour < 0.5*area_minEnclosingCircle)
continue;
// 筛选完成,进行存储
Mat roi = srcImg(Rect(boundRect[i].tl(), boundRect[i].br()));
vec_roi.push_back(roi);
vec_rect.push_back(Rect(boundRect[i].tl(), boundRect[i].br()));
}
// 第七步:载入模板的交通标志
Mat template_srcimg = imread("./template/template.jpg");
cvtColor(template_srcimg, template_srcimg, COLOR_BGR2GRAY); //图像灰度化
//第八步:遍历所有交通标志,进行相似度匹配
Mat gray_template, gray_roi;
for (int i = 0; i < vec_roi.size(); i++)
{
// 创建一个模板副本
template_srcimg.copyTo(gray_template);
Mat tmp_roi = vec_roi[i].clone();
//1. tmp_roi图像 resize为方形
resize(tmp_roi, tmp_roi, cv::Size(min(tmp_roi.rows, tmp_roi.cols), min(tmp_roi.rows, tmp_roi.cols)));
//2. tmp_roi图像灰度化
cvtColor(tmp_roi, gray_roi, COLOR_BGR2GRAY);
//3. 与模板图像统一尺寸
int w = gray_template.cols, h = gray_template.rows;
resize(gray_roi, gray_roi, cv::Size(w, h));
//4. 标记最大内接圆
vector<vector<bool>> enclosingcircle_flag;
Point center(0.5*w, 0.5*h);
for (int col = 0; col < w; col++)
{
vector<bool> col_flag;
for (int row = 0; row < h; row++)
{
bool flag;
if (((col - center.x)*(col - center.x) + (row - center.y)*(row - center.y)) < center.x*center.x) // 内接圆内
flag = true;
else
flag = false;
col_flag.push_back(flag);
}
enclosingcircle_flag.push_back(col_flag);
}
//5.高斯滤波
cv::GaussianBlur(gray_roi, gray_roi, cv::Size(7, 7), 3, 3);
cv::GaussianBlur(gray_roi, gray_roi, cv::Size(5, 5), 3, 3);
cv::GaussianBlur(gray_template, gray_template, cv::Size(7, 7), 3, 3);
cv::GaussianBlur(gray_template, gray_template, cv::Size(5, 5), 3, 3);
//6.二值化
// 与图像的灰度值均值作为二值化的阈值
int gray_mean1 = 0, gray_mean2 = 0;
for (int x = 0; x < w; x++)
for (int y = 0; y < h; y++) {
gray_mean1 += gray_roi.at<uchar>(y, x);
gray_mean2 += gray_template.at<uchar>(y, x);
}
gray_mean1 /= (w*h);
gray_mean2 /= (w*h);
threshold(gray_roi, gray_roi, gray_mean1, 255, cv::THRESH_BINARY_INV);
threshold(gray_template, gray_template, gray_mean2, 255, cv::THRESH_BINARY_INV);
//imshow("gray_roi.jpg", gray_roi);
//imshow("gray_template.jpg", gray_template);
//7. 相似度计算
// 比较两个图255像素点的交集与并集的比值
float jiaoji = 0, bingji = 0;
for (int x = 0; x < w; x++)
for (int y = 0; y < h; y++)
{
if (enclosingcircle_flag[x][y] == false)
continue; // 不处于内接圆,跳过
if (gray_roi.at<uchar>(y, x) == 255 && gray_template.at<uchar>(y, x) == 255) //交集
jiaoji++;
if (gray_roi.at<uchar>(y, x) == 255 || gray_template.at<uchar>(y, x) == 255) //并集
bingji++;
}
float score = jiaoji / bingji;
std::stringstream buf;
buf.precision(3);//覆盖默认精度
buf.setf(std::ios::fixed);//保留小数位
buf << score;
std::string str;
str = buf.str();
putText(srcImg, str, Point(vec_rect[i].x, vec_rect[i].y), FONT_HERSHEY_PLAIN, 2, Scalar(255, 255, 0), 2);
//8. 相似度判断
if (score > 0.7) // 判定通过
{
rectangle(srcImg, vec_rect[i], Scalar(255, 0, 0), 4, 8, 0); //相似度通过,画蓝框
}
else
{
rectangle(srcImg, vec_rect[i], Scalar(0, 0, 255), 4, 8, 0); //相似度不通过,画红框
}
}
imshow("result.jpg", srcImg);//显示最终效果图
waitKey(0);
return 0;
}
srcImg
就是我们的待检测图像,效果如下:
template_srcimg
就是我们需要检测的目标路标,效果如下:
最终效果:
标签:roi,Mat,gray,路标,opencv,详解,hsv,template,Size 来源: https://blog.csdn.net/sazass/article/details/116407064