编程语言
首页 > 编程语言> > python基础(十七):递归函数和匿名函数

python基础(十七):递归函数和匿名函数

作者:互联网

⼆. 递归

2.1 递归的应⽤场景 递归是⼀种编程思想,应⽤场景: 1. 在我们⽇常开发中,如果要遍历⼀个⽂件夹下⾯所有的⽂件,通常会使⽤递归来实现; 2. 在后续的算法课程中,很多算法都离不开递归,例如:快速排序。 2.1.1 递归的特点 函数内部⾃⼰调⽤⾃⼰ 必须有出⼝ 2.2 应⽤:3以内数字累加和
# 3 + 2 + 1
def sum_numbers(num):
     # 1.如果是1,直接返回1 -- 出⼝
     if num == 1:
     return 1
     # 2.如果不是1,重复执⾏累加并返回结果
     return num + sum_numbers(num-1)
sum_result = sum_numbers(3)
# 输出结果为6
print(sum_result)

三. lambda 表达式

3.1 lambda的应⽤场景 如果⼀个函数有⼀个返回值,并且只有⼀句代码,可以使⽤ lambda简化。   3.2 lambda语法
lambda 参数列表 : 表达式
lambda表达式的参数可有可⽆,函数的参数在lambda表达式中完全适⽤。 lambda表达式能接收任何数量的参数但只能返回⼀个表达式的值。 快速⼊⻔
# 函数
def fn1():
    return 200
print(fn1)
print(fn1())
# lambda表达式
fn2 = lambda: 100
print(fn2)
print(fn2())
注意:直接打印lambda表达式,输出的是此lambda的内存地址 3.3 示例:计算a + b 3.3.1 函数实现
def add(a, b):
    return a + b
result = add(1, 2)
print(result)
思考:需求简单,是否代码多? 3.3.2 lambda实现
fn1 = lambda a, b: a + b
print(fn1(1, 2))
3.4 lambda的参数形式 3.4.1.⽆参数
fn1 = lambda: 100
print(fn1())
3.4.2.⼀个参数
fn1 = lambda a: a
print(fn1('hello world'))
3.4.3.默认参数
fn1 = lambda a, b, c=100: a + b + c
print(fn1(10, 20))
3.4.4.可变参数:*args
fn1 = lambda *args: args
print(fn1(10, 20, 30))
注意:这⾥的可变参数传⼊到lambda之后,返回值为元组。 3.4.5.可变参数:**kwargs
fn1 = lambda **kwargs: kwargs
print(fn1(name='python', age=20))
3.5 lambda的应⽤ 3.5.1. 带判断的lambda
fn1 = lambda a, b: a if a > b else b
print(fn1(1000, 500))
3.5.2. 列表数据按字典key的值排序
students = [
 {'name': 'TOM', 'age': 20},
 {'name': 'ROSE', 'age': 19},
{'name': 'Jack', 'age': 22} ]
# 按name值升序排列
students.sort(key=lambda x: x['name'])
print(students)
# 按name值降序排列
students.sort(key=lambda x: x['name'], reverse=True)
print(students)
# 按age值升序排列
students.sort(key=lambda x: x['age'])
print(students)

四. ⾼阶函数

把函数作为参数传⼊,这样的函数称为⾼阶函数,⾼阶函数是函数式编程的体现。函数式编程就是指这种⾼度抽象的编程范式 4.1 体验⾼阶函数 在Python中, abs() 函数可以完成对数字求绝对值计算。
abs(-10) # 10
round() 函数可以完成对数字的四舍五⼊计算。
round(1.2) # 1
round(1.9) # 2
需求:任意两个数字,按照指定要求整理数字后再进⾏求和计算。 ⽅法1
def add_num(a, b):
    return abs(a) + abs(b)
result = add_num(-1, 2)
print(result) # 3
⽅法2
def sum_num(a, b, f):
    return f(a) + f(b)
result = sum_num(-1, 2, abs)
print(result) # 3
注意:两种⽅法对⽐之后,发现,⽅法2的代码会更加简洁,函数灵活性更⾼。 函数式编程⼤量使⽤函数,减少了代码的重复,因此程序⽐较短,开发速度较快。 4.2 内置⾼阶函数 4.2.1 map() map(func, lst),将传⼊的函数变量func作⽤到lst变量的每个元素中,并将结果组成新的列表(Python2)/ 迭代器(Python3)返回。 需求:计算 list1 序列中各个数字的2次⽅。
list1 = [1, 2, 3, 4, 5]
def func(x):
    return x ** 2
result = map(func, list1)
print(result) # <map object at 0x0000013769653198>
print(list(result)) # [1, 4, 9, 16, 25]
4.2.2 reduce() reduce(func,lst),其中func必须有两个参数。每次func计算的结果继续和序列的下⼀个元素做累积计 算。 注意:reduce()传⼊的参数func必须接收2个参数。 需求:计算 list1 序列中各个数字的累加和。
import functools
list1 = [1, 2, 3, 4, 5]
def func(a, b):
    return a + b
result = functools.reduce(func, list1)
print(result) # 15
4.2.3 fifilter() fifilter(func, lst)函数⽤于过滤序列, 过滤掉不符合条件的元素, 返回⼀个 fifilter 对象。如果要转换为列表, 可以使⽤ list() 来转换。
list1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
def func(x):
    return x % 2 == 0
result = filter(func, list1)
print(result) # <filter object at 0x0000017AF9DC3198>
print(list(result)) # [2, 4, 6, 8, 10]

 

五. 总结

递归   函数内部⾃⼰调⽤⾃⼰   必须有出⼝ lambda   语法
lambda 参数列表: 表达式
lambda的参数形式 ⽆参数

 

 

 

 

         

标签:函数,fn1,递归函数,python,匿名,result,func,print,lambda
来源: https://www.cnblogs.com/qiu-hua/p/14727842.html