标准化互信息NMI计算步骤及其Python实现
作者:互联网
标准化互信息NMI计算步骤:
Python 实现
代码:
''' 利用Python实现NMI计算'''
import math
import numpy as np
from sklearn import metrics
def NMI(A,B):
# 样本点数
total = len(A)
A_ids = set(A)
B_ids = set(B)
# 互信息计算
MI = 0
eps = 1.4e-45
for idA in A_ids:
for idB in B_ids:
idAOccur = np.where(A==idA) # 输出满足条件的元素的下标
idBOccur = np.where(B==idB)
idABOccur = np.intersect1d(idAOccur,idBOccur) # Find the intersection of two arrays.
px = 1.0*len(idAOccur[0])/total
py = 1.0*len(idBOccur[0])/total
pxy = 1.0*len(idABOccur)/total
MI = MI + pxy*math.log(pxy/(px*py)+eps,2)
# 标准化互信息
Hx = 0
for idA in A_ids:
idAOccurCount = 1.0*len(np.where(A==idA)[0])
Hx = Hx - (idAOccurCount/total)*math.log(idAOccurCount/total+eps,2)
Hy = 0
for idB in B_ids:
idBOccurCount = 1.0*len(np.where(B==idB)[0])
Hy = Hy - (idBOccurCount/total)*math.log(idBOccurCount/total+eps,2)
MIhat = 2.0*MI/(Hx+Hy)
return MIhat
if __name__ == '__main__':
A = np.array([1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3])
B = np.array([1,2,1,1,1,1,1,2,2,2,2,3,1,1,3,3,3])
print(NMI(A,B))
print(metrics.normalized_mutual_info_score(A,B)) # 直接调用sklearn中的函数
运行结果:
0.3645617718571898
0.3646247961942429
参考:
1 . 标准化互信息
标签:1.0,Python,互信息,ids,len,np,total,NMI 来源: https://blog.csdn.net/qq_30129009/article/details/115800317