编程语言
首页 > 编程语言> > 6大最常用的Java机器学习库一览

6大最常用的Java机器学习库一览

作者:互联网

在 MLOSS.org 网站上,列出了 70 多个基于 Java 的开源机器学习项目,可能还有更多未列出的项目,存于大学里的服务器、GitHub 或 Bitbucket 中。我们将在本文中回顾 Java 中的主流机器学习库和平台,它们能够解决的问题类型,支持的算法以及可以使用的数据类型。

本文节选自 Machine learning in Java,由 Bostjan Kaluza 编写,Packt Publishing Ltd. 出版

Weka

Weka 是 Waikato Environment for Knowledge Analysis(Waikato 智能分析环境)的缩写,是新西兰 Waikato 大学开发的机器学习库,也可能是最为有名的 Java 库。Weka 是一个通用的库,能够解决各种机器学习任务,如分类、回归和聚类。它具有丰富的图形用户界面、命令行界面和 Java API。有关 Weka 更多详情,请参阅:http://www.cs.waikato.ac.nz/ml/weka/

截止到本书写作之时,Weka 总共包含 267 个算法,其中:数据预处理(82),属性选择(33),分类和回归(133),聚类(12),关联规则挖掘(7)。图形界面非常适合用于探索数据,而 Java API 可以让你开发新的机器学习方案并在应用中使用这些算法。


图片

Weka 是在 GNU 通用公共许可证(GNU GPL)下发布的,这意味着你可以复制、分发和修改它,只要你跟踪源文件中的更改并将其保存在 GNU GPL 下。你甚至可以进行商业分发,但前提是你必须公开源代码或获得商业许可证。

除了几种支持的文件格式外,Weka 还提供了自己的默认数据格式 ARFF,用于通过属性 - 数据对描述数据。它由两部分组成:第一部分包含标题头,它指定所有属性(即特性)及其类型;例如,标称、数字、日期和字符串。第二部分包含数据,其中每行对应于一个实例。标题头中的最后一个属性隐式地被视为目标变量,缺失的数据用问号标记。例如,用 ARFF 文件格式编写的 Bob 实例如下:


该文件由三个部分组成。第一部分以 @relation 关键字开始,指定数据集名称。下一部分以 @ATTRIBUTE 关键字开始,后面是属性名和类型。可用的类型是 STRING(字符串)、NUMERIC(数字)、DATE(日期)和一组分类值。最后一个属性被隐式假设为我们想要预测的目标变量。最后一部分以 @DATA 关键字开始,每行后面跟着一个实例。实例值用逗号分隔,并且必须遵循与第二部分中的属性相同的顺序。

Weka 的 Java API 由以下的顶层包组成:

用于机器学习的 Java-ML

Java 机器学习库(Java-ML)是一组机器学习算法的集合,具备用于相同类型的算法的公共接口。它只提供 Java API,因此,它主要面向的是软件工程师和程序员。Java-ML 包含用于数据预处理、特征选择、分类和聚类的算法。此外,它还提供了几个 Weka 桥来直接通过 Java-ML API 访问 Weka 的算法。Java-ML 可从 http://java-ml.sourceforge.net 下载,截至本书完成之际,最近版本发布于 2012 年。


Java-ML 也是一个通用机器学习库。与 Weka 相比,它提供了更为一致的接口和最新算法的实现,在其他包中不存在这些算法,如一系列最先进的相似性度量和特征选择技术等,这些包含动态时间规整、随机森林属性评估等等。Java-ML 也可以在 GNU GPL 许可证下使用。

Java-ML 支持任何类型的文件,只要它每行包含一个数据样本,并且特征用逗号、分号和制表符分隔。

Java-ML 库由以下顶层包组成:

Apache Mahout

Apache Mahout 项目旨在构建可扩展的机器学习库。它是在可扩展分布式体系结构(如 Hadoop)上构建的,实用 MapReduce 范例,这是一种实用服务器集群处理和生成具有并行分布式算法的大型数据及的方法。


Mahout 提供了控制台界面和 Java API,可用于聚类、分类和写作过滤的可扩展算法。它可以解决这三个业务问题:项目推荐,如向喜欢某部电影的人推荐其他可能喜欢的电影;聚类,如将文本文档分组与主题相关的文档组中归档;分类,如学习将哪个主题分配给未标记的文档。

Mahout 是在商业化的 Apache 许可证下分发的,这意味着只要你保留 Apache 许可证并将其显示在程序的版权声明中,你就可以使用它。

Mahout 提供了以下库:

Apache Spark

Apache Spark(或简称 Spark)是在 Hadoop 上构建大规模数据处理的平台,但与 Mahout 不同的是,它与 MapReduce 范式无关。相反,它使用内存缓存提取工作数据集,对其进行处理并重复查询。据报道,Spark 直接处理磁盘存储数据的速度是 Mahout 实现的十倍。可从 https://spark.apache.org 下载。


图片

在 Spark 之上构建了许多模块,例如用于图形处理的 GraphX、用于处理实时数据流的 Spark Streaming 和用于机器学习库的 MLlib,这些模块具有分类、回归、协同过滤、聚类、降维和优化。

Spark 的 MLlib 可以使用基于 Hadoop 的数据源,例如 Hadoop 分布式文件系统(HDFS)或 HBase,以及本地文件。支持的数据类型包括以下几种:

Spark 的 MLlib API 库提供了各种学习算法和实用工具的接口,如下所示:


DeepLearning4j(或称 DL4J),是一个用 Java 编写的深度学习库。它具有分布式和单机深度学习框架,包括并支持各种神经网络结构,如前馈神经网络、RBM(Restricted Boltzmann Machine,受限玻尔兹曼机)、卷积神经网络、深度信念网络、自动编码器等。DL4J 可以解决不同的问题,比如识别面孔、声音、垃圾邮件和电子商务欺诈。

Deeplearning4j 也是在 Apache 2.0 许可下分发的,可从 http://deeplearning4j.org 下载。该库由以下组成:

机器学习语言工作包(Machine Learning for Language Toolkit,MALLET),是一个包含自然语言处理算法和实用程序的大型库。它可以用于各种任务,如文档分类、分档聚类、信息提取和主题建模。MALLET 提供了命令行界面和 Java API,适用于多种算法,如朴素贝叶斯、HMM(Hidden Markov Model,隐马尔可夫模型)、隐含狄利克主题模型(Latent Dirichlet topic model)、逻辑回归和条件随机域(conditional random fields)。


图片


MALLET 可以在通用公共许可证 1.0 下使用,这意味着你甚至可以在商业应用程序中使用它。可以从http://mallet.cs.umass.edu 下载。MALLET 实例由名称、标签、数据和源表示。但是,有两种方法可以将数据导入到 MALLET 格式中,如下所示:

该库由以下包组成:

如果你想利用关键的 Java 机器学习库进行设计、构建和部署你自己的机器学习应用,请查阅 Packt Publishing 出版社出版的《Java 机器学习》(Machine Learning in Java)一书。


标签:机器,org,一览,weka,算法,聚类,apache,Java
来源: https://blog.51cto.com/15060462/2681401