python实现采集yarn队列资源使用百分比,暴露为prometheus的exporter格式,进行yarn队列资源监控
作者:互联网
python脚本实现,访问官方提供的地址,获取队列资源使用指标,并将指标进行json解析,之后再转换为prometheus认识的数据格式,暴露于端口下
#coding=utf-8
'''
通过访问官方提供的yarn restful api界面,获取yarn资源指标
分析json取的所需指标
以pormetheus的数据格式将指标暴露在指定端口下
入参:yarn的ip:port yarn队列数量 export暴露的机器IP(建议为本机IP) export暴露的端口号
'''
import prometheus_client
from prometheus_client import Gauge
from prometheus_client.core import CollectorRegistry
from flask import Response, Flask
import json
import urllib.request
import sys
hjson = json.loads('{}')
app = Flask(__name__)
REGISTRY = CollectorRegistry(auto_describe=False)
def getMetric(ipport,queue_num):
html = urllib.request.urlopen(r'http://'+ipport+'/ws/v1/cluster/scheduler')
data = html.read().decode("utf-8")
global hjson
hjson = json.loads(data)
for i in range(0,queue_num):
queuename = hjson['scheduler']['schedulerInfo']['rootQueue']['childQueues']['queue'][i]['queueName']
usevCores = hjson['scheduler']['schedulerInfo']['rootQueue']['childQueues']['queue'][i]['usedResources']['vCores']
usermemory = hjson['scheduler']['schedulerInfo']['rootQueue']['childQueues']['queue'][i]['usedResources']['memory']
maxvCores = hjson['scheduler']['schedulerInfo']['rootQueue']['childQueues']['queue'][i]['maxResources']['vCores']
maxmemory = hjson['scheduler']['schedulerInfo']['rootQueue']['childQueues']['queue'][i]['maxResources']['memory']
usermemory_percentage = 0.0000
usevCores_percentage = 0.0000
if(maxvCores != 0):
usevCores_percentage = round(usevCores/maxvCores,4)
if(maxmemory != 0):
usermemory_percentage = round(usermemory/maxmemory,4)
queuename = str(queuename).replace(".","_")
registerMetric(queuename,usermemory_percentage,usevCores_percentage)
def registerMetric(queueName,usermemory_percentage,usevCores_percentage):
usememory_percentage_temp = Gauge(
queueName+'_vcores_percentage',
queueName+'_vcores_percentage',
registry=REGISTRY)
usevCores_percentage_temp = Gauge(
queueName+'_memory_percentage',
queueName+'_memory_percentage',
registry=REGISTRY)
usememory_percentage_temp.set(usermemory_percentage)
usevCores_percentage_temp.set(usevCores_percentage)
@app.route('/metrics')
def r_value():
return Response(prometheus_client.generate_latest(REGISTRY),
mimetype="text/plain")
@app.route('/')
def index():
return "namenode jmx metric address: ip:port/metrics"
if __name__ == "__main__":
yarn_ipport = str(sys.argv[1])
queue_num = int(sys.argv[2])
showIp = str(sys.argv[3])
showPort = int(sys.argv[4])
# yarn_ipport = "127.0.0.1:8001"
# showIp = "localhost"
# showPort = 8000
# queue_num = 38
getMetric(yarn_ipport,queue_num)
app.run(host=showIp,port=showPort,debug=True)
标签:队列,hjson,yarn,queue,python,import,percentage,usevCores 来源: https://blog.csdn.net/qq_40498209/article/details/114666028