人工蜂群算法
作者:互联网
%%%%%ARTIFICIAL BEE COLONY ALGORITHM%%%%
%Artificial Bee Colony Algorithm was developed by Dervis Karaboga in 2005
%by simulating the foraging behaviour of bees.
%Copyright ?2008 Erciyes University, Intelligent Systems Research Group, The Dept. of Computer Engineering
%Contact:
%Dervis Karaboga (karaboga@erciyes.edu.tr )
%Bahriye Basturk Akay (bahriye@erciyes.edu.tr)
clear all
close all
clc
% Set ABC Control Parameters
ABCOpts = struct( 'ColonySize', 20, ... % Number of Employed Bees+ Number of Onlooker Bees
'MaxCycles', 2000,... % Maximum cycle number in order to terminate the algorithm
'ErrGoal', 1e-20, ... % Error goal in order to terminate the algorithm (not used in the code in current version)
'Dim', 30 , ... % Number of parameters of the objective function
'Limit', 100, ... % Control paramter in order to abandone the food source
'lb', -30, ... % Lower bound of the parameters to be optimized
'ub', 30, ... %Upper bound of the parameters to be optimized
'ObjFun' , 'Rosenbrock', ... %Write the name of the objective function you want to minimize
'RunTime',10); % Number of the runs
GlobalMins=zeros(ABCOpts.RunTime,ABCOpts.MaxCycles);
for r=1:ABCOpts.RunTime
% Initialise population
Range = repmat((ABCOpts.ub-ABCOpts.lb),[ABCOpts.ColonySize ABCOpts.Dim]);
Lower = repmat(ABCOpts.lb, [ABCOpts.ColonySize ABCOpts.Dim]);
Colony = rand(ABCOpts.ColonySize,ABCOpts.Dim) .* Range + Lower;
Employed=Colony(1:(ABCOpts.ColonySize/2),:);
%evaluate and calculate fitness
ObjEmp=feval(ABCOpts.ObjFun,Employed);
FitEmp=calculateFitness(ObjEmp);
%set initial values of Bas
Bas=zeros(1,(ABCOpts.ColonySize/2));
GlobalMin=ObjEmp(find(ObjEmp==min(ObjEmp),end));
GlobalParams=Employed(find(ObjEmp==min(ObjEmp),end),:);
Cycle=1;
while ((Cycle <= ABCOpts.MaxCycles)),
%%%%% Employed phase
Employed2=Employed;
for i=1:ABCOpts.ColonySize/2
Param2Change=fix(rand*ABCOpts.Dim)+1;
neighbour=fix(rand*(ABCOpts.ColonySize/2))+1;
while(neighbour==i)
neighbour=fix(rand*(ABCOpts.ColonySize/2))+1;
end;
Employed2(i,Param2Change)=Employed(i,Param2Change)+(Employed(i,Param2Change)-Employed(neighbour,Param2Change))*(rand-0.5)*2;
if (Employed2(i,Param2Change)<ABCOpts.lb)
Employed2(i,Param2Change)=ABCOpts.lb;
end;
if (Employed2(i,Param2Change)>ABCOpts.ub)
Employed2(i,Param2Change)=ABCOpts.ub;
end;
end;
ObjEmp2=feval(ABCOpts.ObjFun,Employed2);
FitEmp2=calculateFitness(ObjEmp2);
[Employed ObjEmp FitEmp Bas]=GreedySelection(Employed,Employed2,ObjEmp,ObjEmp2,FitEmp,FitEmp2,Bas,ABCOpts);
%Normalize
NormFit=FitEmp/sum(FitEmp);
%%% Onlooker phase
Employed2=Employed;
i=1;
t=0;
while(t<ABCOpts.ColonySize/2)
if(rand<NormFit(i))
t=t+1;
Param2Change=fix(rand*ABCOpts.Dim)+1;
neighbour=fix(rand*(ABCOpts.ColonySize/2))+1;
while(neighbour==i)
neighbour=fix(rand*(ABCOpts.ColonySize/2))+1;
end;
Employed2(i,:)=Employed(i,:);
Employed2(i,Param2Change)=Employed(i,Param2Change)+(Employed(i,Param2Change)-Employed(neighbour,Param2Change))*(rand-0.5)*2;
if (Employed2(i,Param2Change)<ABCOpts.lb)
Employed2(i,Param2Change)=ABCOpts.lb;
end;
if (Employed2(i,Param2Change)>ABCOpts.ub)
Employed2(i,Param2Change)=ABCOpts.ub;
end;
ObjEmp2=feval(ABCOpts.ObjFun,Employed2);
FitEmp2=calculateFitness(ObjEmp2);
[Employed ObjEmp FitEmp Bas]=GreedySelection(Employed,Employed2,ObjEmp,ObjEmp2,FitEmp,FitEmp2,Bas,ABCOpts,i);
end;
i=i+1;
if (i==(ABCOpts.ColonySize/2)+1)
i=1;
end;
end;
%%%Memorize Best
CycleBestIndex=find(FitEmp==max(FitEmp));
CycleBestIndex=CycleBestIndex(end);
CycleBestParams=Employed(CycleBestIndex,:);
CycleMin=ObjEmp(CycleBestIndex);
if CycleMin<GlobalMin
GlobalMin=CycleMin;
GlobalParams=CycleBestParams;
end
GlobalMins(r,Cycle)=GlobalMin;
%% Scout phase
ind=find(Bas==max(Bas));
ind=ind(end);
if (Bas(ind)>ABCOpts.Limit)
Bas(ind)=0;
Employed(ind,:)=(ABCOpts.ub-ABCOpts.lb)*(0.5-rand(1,ABCOpts.Dim))*2;%+ABCOpts.lb;
%message=strcat('burada',num2str(ind))
end;
ObjEmp=feval(ABCOpts.ObjFun,Employed);
FitEmp=calculateFitness(ObjEmp);
fprintf('Cycle=%d ObjVal=%g\n',Cycle,GlobalMin);
Cycle=Cycle+1;
end % End of ABC
end; %end of runs
if ABCOpts.RunTime>1
semilogy(mean(GlobalMins))
title('Mean of Best function values');
xlabel('cycles');
ylabel('error');
fprintf('Mean =%g Std=%g\n',mean(GlobalMins(:,end)),std(GlobalMins(:,end)));
end
%--------------------------------------------------------------------------
% 解输出
GlobalMin
GlobalParams
标签:蜂群,ObjEmp,end,Employed2,人工,Param2Change,算法,Employed,ABCOpts 来源: https://blog.csdn.net/ccsss22/article/details/113852288