三维点云学习(Ⅰ)- C++实操
作者:互联网
三维点云学习(Ⅰ)- C++实操
一、VS2013配置PCl1.80库
参考链接
二、本过程采用数据集为modelnet40
为40种物体的三维点云数据集
链接:https://pan.baidu.com/s/1LX9xeiXJ0t-Fne8BCGSjlQ
提取码:es14
三、PCA降维
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/features/normal_3d.h>
#include <pcl/surface/gp3.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <Eigen/Dense>
//功能介绍:读入txt、asc->pcl::PointXYZ格式(数据集中只读取前三列)
void CreateCloudFromTxt(const std::string& file_path, pcl::PointCloud<pcl::PointXYZ>::Ptr cloud)
{
std::ifstream file(file_path.c_str());//c_str():生成一个const char*指针,指向以空字符终止的数组。
std::string line;
pcl::PointXYZ point;
while (getline(file, line)) //用到x,y,z
{
std::stringstream ss(line);
ss >> point.x;
ss >> point.y;
ss >> point.z;
cloud->push_back(point);
}
file.close();
}
//功能:点云转换为矩阵
void PointConversionEigen(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, Eigen::MatrixXd &cloudMat)
{
cloudMat.resize(cloud->points.size(), 3); //定义点云行,3列
for (int itr = 0; itr < cloud->points.size(); itr++)
{
cloudMat(itr, 0) = cloud->points[itr].x;
cloudMat(itr, 1) = cloud->points[itr].y;
cloudMat(itr, 2) = cloud->points[itr].z;
}
}
//功能:实现PCA功能
void PCAFunctions(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, pcl::Normal &pointNormal, pcl::Normal &pointNormal2)
{
Eigen::MatrixXd cloudMat;
cloudMat.resize(cloud->points.size(), 3); //定义点云行,3列
for (int itr = 0; itr < cloud->points.size(); itr++)
{
cloudMat(itr, 0) = cloud->points[itr].x;
cloudMat(itr, 1) = cloud->points[itr].y;
cloudMat(itr, 2) = cloud->points[itr].z;
}
Eigen::RowVector3d meanMat = cloudMat.colwise().mean();
cloudMat.rowwise() -= meanMat;
//求协方差矩阵
Eigen::MatrixXd covMat;
if (cloudMat.rows() == 1)
covMat = (cloudMat.adjoint()*cloudMat) / double(cloudMat.rows());
else
covMat = (cloudMat.adjoint()*cloudMat) / double(cloudMat.rows() - 1);
Eigen::JacobiSVD<Eigen::MatrixXd> svd(covMat, Eigen::ComputeFullU | Eigen::ComputeFullV);
Eigen::Matrix3d V = svd.matrixV();
Eigen::Matrix3d U = svd.matrixU();
Eigen::Matrix3d S = U.inverse() * covMat * V.transpose().inverse();
pointNormal2.normal_x = V(3);
pointNormal2.normal_y = V(4);
pointNormal2.normal_z = V(5);
pointNormal.normal_x = V(6);
pointNormal.normal_y = V(7);
pointNormal.normal_z = V(8);
}
//功能:输入点云计算法相
void PointCloudNormal(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, pcl::PointCloud<pcl::Normal>::Ptr &normals)
{
//pcl::PointCloud<pcl::Normal>::Ptr normalsExcess(new pcl::PointCloud<pcl::Normal>);
for (int iPt = 0; iPt < cloud->points.size(); iPt++)
{
pcl::KdTreeFLANN<pcl::PointXYZ> kdTree;
kdTree.setInputCloud(cloud);
pcl::PointCloud<pcl::PointXYZ>::Ptr searchKPoints(new pcl::PointCloud<pcl::PointXYZ>); //搜寻结果
int k = 10;
std::vector<int> kIndices(k);
std::vector<float> kSqrDistances(k);
if (kdTree.nearestKSearch(cloud->points[iPt], k, kIndices, kSqrDistances) > 0)
{
pcl::PointXYZ kPoint;
for (int i = 0; i < k; i++)
{
kPoint.x = cloud->points[kIndices[i]].x;
kPoint.y = cloud->points[kIndices[i]].y;
kPoint.z = cloud->points[kIndices[i]].z;
searchKPoints->push_back(kPoint);
}
}
// neighbors within radius search
//float radius = 1.0;
//std::vector<int> radiusIndices;
//std::vector<float> radiusSqrDistance;
//if (kdTree.radiusSearch(cloud->points[iPt], radius, radiusIndices, radiusSqrDistance) > 0)
//{
// //do something
//}
pcl::Normal pointNormal, pointNormal2;
PCAFunctions(searchKPoints, pointNormal, pointNormal2);
normals->push_back(pointNormal);
}
//normals = normalsExcess;
}
int main()
{
//加载点云模型
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
CreateCloudFromTxt("airplane_0008.asc", cloud);
Eigen::MatrixXd cloudMat;
PointConversionEigen(cloud, cloudMat);
//计算所有点云的法向量
pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
PointCloudNormal(cloud, normals);
//降维
pcl::PointCloud<pcl::PointXYZ>::Ptr projectionCloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::Normal pointCloudNormal, pointCloudNormal2; //降维所用法向量
//Eigen::RowVector3d projectionMat; //降维所用法向量
Eigen::MatrixXd projectionPointMat;
PCAFunctions(cloud, pointCloudNormal, pointCloudNormal2);
//projectionMat << pointCloudNormal.normal_x, pointCloudNormal.normal_y, pointCloudNormal.normal_z;
//Eigen::Matrix3d diagonalMat(projectionMat.asDiagonal()); //构造对角矩阵
//projectionPointMat = (diagonalMat*cloudMat.transpose()).transpose();
Eigen::Matrix3d projectionMat;
projectionMat << pointCloudNormal.normal_x, pointCloudNormal.normal_y, pointCloudNormal.normal_z,
pointCloudNormal2.normal_x, pointCloudNormal2.normal_y, pointCloudNormal2.normal_z,
0, 0, 0;
projectionPointMat = (projectionMat*cloudMat.transpose()).transpose();
pcl::PointXYZ mPoint;
for (int i = 0; i < projectionPointMat.size(); i++)
{
mPoint.x = projectionPointMat(i, 0);
mPoint.y = projectionPointMat(i, 1);
mPoint.z = projectionPointMat(i, 2);
projectionCloud->push_back(mPoint);
}
/*图形显示模块*/
boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("3D viewer"));
//viewer->initCameraParameters();
int v1(0), v2(1), v3(2), v4(3);
viewer->createViewPort(0.0, 0.0, 0.5, 0.5, v1);
viewer->createViewPort(0.5, 0.0, 1.0, 0.5, v2);
viewer->createViewPort(0.0, 0.5, 0.5, 1.0, v3);
viewer->createViewPort(0.5, 0.5, 1.0, 1.0, v4);
//设置背景颜色
viewer->setBackgroundColor(5, 55, 10, v1);
//设置点云颜色
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> single_color(cloud, 0, 225, 0);
//添加坐标系
viewer->addCoordinateSystem(0.5, v1);
viewer->addPointCloud<pcl::PointXYZ>(projectionCloud, "sample cloud", v1);
viewer->addPointCloud<pcl::PointXYZ>(cloud, "sample cloud0", v2);
viewer->addPointCloudNormals<pcl::PointXYZ, pcl::Normal>(cloud, normals, 1, 0.01, "normals", v2);
viewer->addPointCloud<pcl::PointXYZ>(cloud, single_color, "sample cloud1", v3);
viewer->addPointCloud<pcl::PointXYZ>(projectionCloud, "sample cloud3", v4);
//设置点云大小
viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "sample cloud3", 4);
//添加点云法向量的另一种方式;
//解决来源http://www.pcl-users.org/How-to-add-PointNormal-on-PCLVisualizer-td4037041.html
//pcl::PointCloud<pcl::PointNormal>::Ptr cloud_with_normals(new pcl::PointCloud<pcl::PointNormal>);
//pcl::concatenateFields(*cloud, *normals, *cloud_with_normals);
//viewer->addPointCloudNormals<pcl::PointNormal>(cloud_with_normals, 50, 0.01, "normals");
//
while (!viewer->wasStopped())
{
viewer->spinOnce(100);
boost::this_thread::sleep(boost::posix_time::microseconds(100000));
}
return 0;
}
标签:cloudMat,viewer,C++,实操,pcl,点云,PointCloud,itr,cloud 来源: https://blog.csdn.net/qq_41188371/article/details/113739202