编程语言
首页 > 编程语言> > 机器学习-聚类算法

机器学习-聚类算法

作者:互联网

聚类,就像回归一样,有时候人们描述的是一类问题,有时候描述的是一类算法。聚类算法通常按照中心点或者分层的方式对输入数据进行归并。所以的聚类算法都试图找到数据的内在结构,以便按照最大的共同点将数据进行归类。

常见的聚类算法包括 k-Means算法以及期望最大化算法

(1) 首先我们选择一些类/组,并随机初始化它们各自的中心点。中心点是与每个数据点向量长度相同的位置。这需要我们提前预知类的数量(即中心点的数量)。
(2) 计算每个数据点到中心点的距离,数据点距离哪个中心点最近就划分到哪一类中。
(3) 计算每一类中中心点作为新的中心点。
(4) 重复以上步骤,直到每一类中心在每次迭代后变化不大为止。也可以多次随机初始化中心点,然后选择运行结果最好的一个。

 

标签:初始化,机器,算法,中心点,聚类,一类,数据
来源: https://www.cnblogs.com/520520520zl/p/14294451.html