编程语言
首页 > 编程语言> > 机器学习-回归算法

机器学习-回归算法

作者:互联网

 

批量梯度下降法

批量梯度下降法是最原始的形式,它是指在每一次迭代时使用所有样本来进行梯度的更新。从数学上理解如下:
  (1)对目标函数求偏导:
  这里写图片描述
  优点:
  (1)一次迭代是对所有样本进行计算,此时利用矩阵进行操作,实现了并行
  (2)由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。当目标函数为凸函数时,BGD一定能够得到全局最优
  缺点:
  (1)当样本数目 m 很大时,每迭代一步都需要对所有样本计算,训练过程会很慢
  从迭代的次数上来看,BGD迭代的次数相对较少。其迭代的收敛曲线示意图可以表示如下:
  

 

标签:机器,函数,迭代,梯度,回归,样本,算法,BGD,进行
来源: https://www.cnblogs.com/520520520zl/p/14284439.html