吴恩达深度学习第一课Week2编程作业Logistics Regression with a Neural Network mindset
作者:互联网
Load the data
Step 1 is to load the data and then you can show the picture with an index.
here’s the code:
import numpy as np
import matplotlib.pyplot as plt
import h5py
import pylab
import scipy
from PIL import Image
from scipy import ndimage
def load_dataset():
train_dataset = h5py.File(r'D:\DeepLearning\Week2\week2dataset\datasets\train_catvnoncat.h5', "r")
train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels
test_dataset = h5py.File(r'D:\DeepLearning\Week2\week2dataset\datasets\test_catvnoncat.h5', "r")
test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels
classes = np.array(test_dataset["list_classes"][:]) # the list of classes
train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
#loading the data cat or not cat
train_set_x_orig,train_set_y_orig,test_set_x_orig,test_set_y_orig,classes=load_dataset()
#you can check the picture
plt.imshow(train_set_x_orig[25])
pylab.show()#here need to add this sentence to show the picture .remeber to import the pylab
**Reshape the data **
Reshape the training and test data ,以便将大小为(m,n,3)的图像展平为单个形状的向量(m×n×3,1)。
把一个维度为(a,b,c,d)的矩阵X展平为(b×c×d,a)的一个技巧是这个语句:
X_flatten = X.reshape(X.shape [0],-1).T
详细的解释可以参考这篇文章:https://blog.csdn.net/tefuirnever/article/details/88919206
now reshape the data:
#reshape the training and test examples
train_set_x_orig=train_set_x_orig.reshape(train_set_x_orig.shape[0],-1).T
test_set_x_orig=test_set_x_orig.reshape(test_set_x_orig.shape[0],-1).T
Mean Normalization
#normalization
train_set_x=train_set_x_flatten/255
test_set_x=test_set_x_flatten/255
Need to Remember:
预处理数据集常见的步骤是
1.找出数据集的shape
2.reshape数据集,使每个示例大小都为(m×n×3,1)
3.normalization标准化数据
接下来要做的是:
1.初始化模型参数
2.通过最小化损失来学习模型参数
3.使用学习到的参数进行预测
初始化参数
初始化参数w和b,其中w维度是(m×n×3,1),b=0
#sigmoid
def sigmoid(z):
return 1/(1+np.exp(-z))
#initialize the parameters w and b with 0
def initialize_with_zeros(dim):
w=np.zeros((dim,1))
b=0
return w,b
前向和后向传播
公式如下:
实现代码:
#gradient decent:propagate
def propagate(w,b,X,Y):
m=X.shape[1]
A=sigmoid(np.dot(w.T,X)+b)
cost=(-1/m)*np.sum(Y*np.log(A)+(1-Y)*np.log(1-A),axis=1)#computer cost
dw=1/m*np.dot(X,(A-Y).T)
db=1/m*np.sum(A-Y)
cost=np.squeeze(cost)#squeeze的作用是去掉维度为1的维,这里是把一个一维的变成一个数字
return dw,db,cost
优化函数
计算loss function 及其梯度,使用梯度下降来更新参数
def optimize(w,b,X,Y,num_iterations,learning_rate,print_cost=False):
costs=[]
for i in range(num_iterations):
dw,db,cost=propagate(w,b,X,Y)
w=w-learning_rate*dw
b=b-learning_rate*db
if i%100==0:
costs.append(cost)
if print_cost and i%100==0:
print('cost after iteration %i:%f'%(i,cost))
return w,b,dw,db,costs
预测
根据上一个函数学习到的w和b来预测数据集
def predict(w,b,X):
m=X.shape[1]
Y_prediction=np.zeros((1,m))
w=w.reshape(X.shape[0],1)
A=sigmoid(np.dot(w.T,X)+b)
for i in range(A.shape[1]):
if A[0,i]>=0.5:
Y_prediction[0,i]=1
else:
Y_prediction[0,i]=0
assert(Y_prediction.shape==(1,m))
return Y_prediction
将所有功能整合到模型中
def model(X_train,Y_train,X_test,Y_test,num_iterations=2000,learning_rate=0.5,print_cost=False):
w,b=initialize_with_zeros(X_train.shape[0])#initialize the parameters
#gradient descent to find the optimized parameters
w,b,dw,db,costs=optimize(w,b,X_train,Y_train,num_iterations,learning_rate,print_cost)
#predict the test data
Y_prediction_test=predict(w,b,X_test)
Y_prediction_train=predict(w,b,X_train)
#output the accuracy
print('train accuracy:{}%'.format(100-np.mean(np.abs(Y_prediction_train-Y_train))*100))
print('test accuracy:{}%'.format(100 - np.mean(np.abs(Y_prediction_test-Y_test)) * 100))
#将所有的结果以字典形式保存并返回
d={"costs":costs,
"Y_prediction_test":Y_prediction_test,
"Y_prediction_train":Y_prediction_train,
'w':w,
'b':b,
'learning_rate':learning_rate,
'num_iterations':num_iterations}
return d
运行:
d=model(train_set_x,train_set_y_orig,test_set_x,test_set_y_orig,num_iterations=2000,learning_rate=0.005,print_cost=True)
print(d)
得出结果:
训练准确度:99.0%
预测准确度:70.0%
使用自己的图片来预测
找一张猫和非猫的图片来预测下:
以下是我找到的图片1
代码如下
# --------------测试本地图片------------
fname =r'C:\Users\lee\Pictures\fish.jpg'
image = np.array(plt.imread(fname))
my_image = np.array(Image.fromarray(image).resize(size=(num_px,num_px))).reshape((1,num_px*num_px*3)).T
my_predicted_image = predict(d["w"], d["b"], my_image)
plt.imshow(image)
plt.show()
print("y = " + str(np.squeeze(my_predicted_image)) + ", 你的预测结果是\""
+ classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.")
预测结果如下
图片2
图片3
错误的预测
整体的代码
import numpy as np
import matplotlib.pylab as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
def load_dataset():
train_dataset = h5py.File(r'D:\DeepLearning\Week2\week2dataset\datasets\train_catvnoncat.h5', "r")
train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels
test_dataset = h5py.File(r'D:\DeepLearning\Week2\week2dataset\datasets\test_catvnoncat.h5', "r")
test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels
classes = np.array(test_dataset["list_classes"][:]) # the list of classes
train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
train_set_x_orig,train_set_y,test_set_x_orig,test_set_y,classes =load_dataset()
# index = 46 # 取第46张图片
# plt.imshow(train_set_x_orig[index])
# plt.show()
# print("y = "+ str(train_set_y[ : ,index]) +",it is a ' " +classes[np.squeeze(train_set_y[:,index])].decode("utf-8") + " ' picture.")
# print("---------------数据集的详细内容-----------------")
m_train = train_set_x_orig.shape[0]
m_test = test_set_x_orig.shape[0]
num_px = train_set_x_orig.shape[1]
# print("训练样本的数量是: m_train =" + str(m_train))
# print("测试集的样本数量是: m_test =" + str(m_test))
# print("每个图片的长宽是: num_px =" + str(num_px))
# print("每个图片的尺寸是: (" + str(num_px) +"," + str(num_px) + ",3")
# print("训练集X的尺寸:" + str(train_set_x_orig.shape))
# print("训练集y的尺寸:" + str(train_set_y.shape))
# print("测试集X的尺寸:" + str(test_set_x_orig.shape))
# print("测试集y的尺寸:" + str(test_set_y.shape))
# print("---------将样本整合为一个向量后数据集详情----------")
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0],-1).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0],-1).T
# print("训练集x向量化后的尺寸:"+ str(train_set_x_flatten.shape))
# print("训练集y的尺寸:" + str(train_set_y.shape))
# print("测试集向量化后尺寸:" + str(test_set_x_flatten.shape))
# print("测试集y的尺寸:" + str(test_set_y.shape))
# print("整形后的检查:" + str(train_set_x_flatten[0:5,0]))# 取列向的第0-4个数
# -------------------数据归一化----------------------
train_set_x = train_set_x_flatten/255
test_set_x = test_set_x_flatten/255
# -------------------构建sigmoi函数---------------
def sigmoid(z):
s = 1 / (1 + np.exp(-z))
return s
# print("---------------测试simoid函数---------------------")
# print("sigmiod([0,2]) = " + str(sigmoid(np.array([0,2]))))
# ----------------------初始化权重和偏置----------------------
def initialize_with_zeros(dim):
w = np.zeros((dim,1))
b = 0
assert (w.shape == (dim,1))
assert (isinstance(b,float)or isinstance(b,int))
return w,b
# print("---------------测试初始化结果---------------------")
dim = 2
w,b = initialize_with_zeros(dim)
# print("w = " + str(w))
# print("b = " + str(b))
# ------------构建正向传播函数------------
def propagate(w,b,X,Y):
m = X.shape[1]
A = sigmoid(np.dot(w.T,X) + b)
cost = -1/m*np.sum(Y*np.log(A) + (1-Y)*np.log(1-A))
dw = 1/m*np.dot(X,(A - Y).T)
db = 1/m*np.sum(A-Y)
assert (dw.shape == w.shape)
assert (db.dtype == float)
cost = np.squeeze(cost)
assert (cost.shape == ())
grads = {"dw":dw,
"db":db}
return grads,cost
# print("--------------正向传播测试--------------------")
# w,b,X,Y = np.array([[1],[2]]),2,np.array([[1,2],[3,4]]),np.array([[1,0]])
# grads,cost= propagate(w,b,X,Y)
# print("dw = " + str(grads["dw"]))
# print("db = " + str(grads["db"]))
# print("cost = " + str(cost))
# -------------------构建反向传播函数--------------------
def optimize(w,b,X,Y,num_iteration,learning_rate,print_cost = False):#num_iteration是优化循环的迭代次数
costs = []
for i in range(num_iteration):
grads,cost = propagate(w,b,X,Y)
dw = grads["dw"]
db = grads["db"]
w = w - learning_rate*dw
b = b - learning_rate*db
if i % 100 == 0:
costs.append(cost)
if print_cost and i % 100 == 0:
print("经过i次循环后损失函数值 i = %i:%f" %(i,cost))
params = {"w" : w,
"b" : b}
grads = {"dw" : dw,
"db" : db}
return params,grads,costs
# print("----------------测试反向传播--------------")
# params,grads,costs = optimize(w,b,X,Y,num_iteration= 100,learning_rate= 0.009,print_cost= False)
# print("w = " + str(params["w"]))
# print("b = " + str(params["b"]))
# print("dw = " + str(grads["dw"]))
# print("db = " + str(grads["db"]))
# print(costs)
# --------------构建预测函数-----------------
def predict(w,b,X):
m = X.shape[1]
Y_prediction = np.zeros((1,m))
w = w.reshape(X.shape[0],1)
A = sigmoid(np.dot(w.T,X) + b)
for i in range(A.shape[1]):
if A[0,i] <= 0.5:
Y_prediction[0,i] = 0
else:
Y_prediction[0,i] = 1
assert (Y_prediction.shape == (1,m))
return Y_prediction
# print("-------------测试预测结果--------------------")
# print("预测结果:" + str(predict(w,b,X)))
# -------------------将所有函数合并到一个模型中-----------------
def model(X_train,Y_train,X_test,Y_test,num_iterations = 2000,learning_rate = 0.5,print_cost = False):
w,b = initialize_with_zeros(X_train.shape[0])
parameters,grads,costs = optimize(w,b,X_train,Y_train,num_iterations,learning_rate,print_cost)
w = parameters["w"]
b = parameters["b"]
Y_prediction_test = predict(w,b,X_test)
Y_prediction_train = predict(w,b,X_train)
print("训练集精度:{} %".format(100 - np.mean(np.abs(Y_prediction_train-Y_train))*100))
print("测试集精度:{} %".format(100 - np.mean(np.abs(Y_prediction_test-Y_test))*100))
d = {"costs" : costs,
"测试集预测结果": Y_prediction_test,
"训练集预测结果": Y_prediction_train,
"w": w,
"b": b,
"learning_rate": learning_rate,
"num_iterations": num_iterations}
return d
print("--------------------测试模型---------------------")
d = model(train_set_x,train_set_y,test_set_x,test_set_y,num_iterations= 2000,learning_rate=0.005,print_cost= True)
index = 15
plt.imshow(test_set_x[:,index].reshape((num_px,num_px,3)))
plt.show()
print("y = " + str(test_set_y[0,index]) + ",预测结果是\"" + classes[int(d["测试集预测结果"][0,index])].decode("utf-8")+"\" picture")
print("---------------显示被预测图片---------------")
costs = np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('代价函数值')
plt.xlabel('每一百次迭代')
plt.title("学习率 = " + str(d["learning_rate"]))
plt.show()
# ---------------------改变学习率---------------------
learning_rates = [0.01,0.011,0.005]
models = {}
for i in learning_rates:
print("学习率是:" + str(i))
models[str(i)] = model(train_set_x,train_set_y,test_set_x,test_set_y,num_iterations = 1500,learning_rate = i,print_cost = False)
print('\n' + "--------------------------------" + '\n')
for i in learning_rates:
# plt.plot(np.squeeze(models[str(i)]["损失函数"]), label= str(models[str(i)]["学习率"]))
plt.plot(np.squeeze(models[str(i)]["costs"]), label=str(models[str(i)]["learning_rate"]))
plt.xlabel('cost')
plt.xlabel("iterations")
legend = plt.legend(loc='upper center',shadow= True)
frame = legend.get_frame()
frame.set_facecolor('0.90')
plt.show()
# --------------测试本地图片------------
fname =r'C:\Users\lee\Pictures\20201025105732.jpg'
image = np.array(plt.imread(fname))
my_image = np.array(Image.fromarray(image).resize(size=(num_px,num_px))).reshape((1,num_px*num_px*3)).T
my_predicted_image = predict(d["w"], d["b"], my_image)
plt.imshow(image)
plt.show()
print("y = " + str(np.squeeze(my_predicted_image)) + ", 你的预测结果是\""
+ classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.")
标签:Logistics,吴恩达,set,print,第一课,train,test,np,orig 来源: https://blog.csdn.net/LunaLee38/article/details/111062755