编程语言
首页 > 编程语言> > 蒙特卡罗算法之素数测试

蒙特卡罗算法之素数测试

作者:互联网

1.、素数测试问题

     数学原理

         Wilson定理:对于给定的正整数n,判定n是一个素数的充要条件是(n-1)!1(mod p)的解为x=1,p-1。

         Carmichael数:费尔马小定理是素数判定的一个必要条件。满足费尔马小定理条件的整数n未必全是素数。有些合数也满足费尔马小定理的条件,这些合数称为Carmichael数。前3个Carmichael数是561,1105,1729。Carmichael数是非常少的,在1~100000000的整数中,只有255个Carmichael数。

求a^m(mod n)的算法

     设m的二进制表示为bkbk-1…b1b0(bk=1)。
     例:m=41=101001(2),bkbk-1…b1b0=101001,(k=5)。
     可以这样来求a^m:初始C←1。
     b5=1:C←C^2(=1),∵bk=1,做C←a*C(=a);
     b5b4=10:C←C^2(=a^2),∵bk-1=0,不做动作;
     b5b4b3=101:C←C^2(=a^4),∵bk-2=1,做C←a*C(=a^5);
     b5b4b3b2=1010:C←C^2(=a^10),∵bk-3= b2=0,不做动作;
     b5b4b3b2b1=10100:C←C^2(=a^20),∵bk-4= b1=0,不做动作;
     b5b4b3b2b1b0=101001:C←C^2(=a^40),∵bk-5= b0=1,做C←a*C(=a^41)。
     最终要对am求模,而求模可以引入到计算中的每一步:
     即在求得C2及a*C之后紧接着就对这两个值求模,然后再存入C。
     这样做的好处是存储在C中的最大值不超过n-1,
     于是计算的最大值不超过max{(n-1)^2,a(n-1)}。
     因此,即便am很大,求am(mod n)时也不会占用很多空间。

代码实现:

//随机化算法 蒙特卡罗算法 素数测试问题
//#include "stdafx.h"
#include "RandomNumber.h"
#include <cmath>
#include <iostream>
using namespace std;
 
//计算a^p mod n,并实施对n的二次探测
void power(unsigned int a,unsigned int p,unsigned int n,unsigned int &result,bool &composite)
{
    unsigned int x;
    if(p == 0)
    {
        result = 1;
    }
    else
    {
        power(a,p/2,n,x,composite);        //递归计算
        result = (x*x)%n;                //二次探测
 
        if((result == 1) && (x!=1) && (x!=n-1))
        {
            composite  = true;
        }
 
        if((p%2)==1)
        {
            result = (result*a)%n;
        }
    }
}
 
//重复调用k次Prime算法的蒙特卡罗算法
bool PrimeMC(unsigned int n,unsigned int k)
{
    RandomNumber rnd;
    unsigned int a,result;
    bool composite = false;
 
    for(int i=1; i<=k; i++)
    {
        a = rnd.Random(n-3)+2;
        power(a,n-1,n,result,composite);
        if(composite || (result!=1))
        {
            return false;
        }
    }
    return true;
}
 
int main()
{
    int k = 10;
    for(int i=1010;i<1025;i++)
    {
        cout<<i<<"的素数测试结果为:"<<PrimeMC(i,k)<<endl;
    }
    return 0;
}
View Code
#include"time.h"
//随机数类
const unsigned long maxshort = 65536L;
const unsigned long multiplier = 1194211693L;
const unsigned long adder = 12345L;
 
class RandomNumber
{
    private:
        //当前种子
        unsigned long randSeed;
    public:
        RandomNumber(unsigned long s = 0);//构造函数,默认值0表示由系统自动产生种子
        unsigned short Random(unsigned long n);//产生0:n-1之间的随机整数
        double fRandom(void);//产生[0,1)之间的随机实数
};
 
RandomNumber::RandomNumber(unsigned long s)//产生种子
{
    if(s == 0)
    {
        randSeed = time(0);//用系统时间产生种子
    }
    else
    {
        randSeed = s;//由用户提供种子
    }
}
 
unsigned short RandomNumber::Random(unsigned long n)//产生0:n-1之间的随机整数
{
    randSeed = multiplier * randSeed + adder;//线性同余式
    return (unsigned short)((randSeed>>16)%n);
}
 
double RandomNumber::fRandom(void)//产生[0,1)之间的随机实数
{
    return Random(maxshort)/double(maxshort);
}
View Code

实现结果:

 参考文献:王晓东《算法设计与分析》第二版

                   https://blog.csdn.net/liufeng_king/article/details/9251589

标签:int,算法,long,unsigned,素数,蒙特卡罗,RandomNumber,mod
来源: https://www.cnblogs.com/cy0628/p/14012664.html