首页 > 编程语言> > java.lang.IllegalArgumentException: Required executor memory (1024), overhead (384 MB), and PySpark
java.lang.IllegalArgumentException: Required executor memory (1024), overhead (384 MB), and PySpark
作者:互联网
ERROR spark.SparkContext: Error initializing SparkContext. java.lang.IllegalArgumentException: Required executor memory (1024), overhead (384 MB), and PySpark memory (0 MB) is above the max threshold (1024 MB) of this cluster! Please check the values of 'yarn.scheduler.maximum-allocation-mb' and/or 'yarn.nodemanager.resource.memory-mb'. at org.apache.spark.deploy.yarn.Client.verifyClusterResources(Client.scala:346) at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:180) at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:60) at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:186) at org.apache.spark.SparkContext.<init>(SparkContext.scala:511) at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2549) at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:944) at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:935) at scala.Option.getOrElse(Option.scala:121) at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:935) at org.apache.spark.repl.Main$.createSparkSession(Main.scala:106) at $line3.$read$$iw$$iw.<init>(<console>:15) at $line3.$read$$iw.<init>(<console>:43) at $line3.$read.<init>(<console>:45) at $line3.$read$.<init>(<console>:49) at $line3.$read$.<clinit>(<console>) at $line3.$eval$.$print$lzycompute(<console>:7) at $line3.$eval$.$print(<console>:6) at $line3.$eval.$print(<console>) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:793) at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1054) at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:645) at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:644) at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31) at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19) at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:644) at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:576) at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:572) at scala.tools.nsc.interpreter.IMain$$anonfun$quietRun$1.apply(IMain.scala:231) at scala.tools.nsc.interpreter.IMain$$anonfun$quietRun$1.apply(IMain.scala:231) at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:221) at scala.tools.nsc.interpreter.IMain.quietRun(IMain.scala:231) at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1.apply(SparkILoop.scala:109) at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1.apply(SparkILoop.scala:109) at scala.collection.immutable.List.foreach(List.scala:392) at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply$mcV$sp(SparkILoop.scala:109) at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:109) at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:109) at scala.tools.nsc.interpreter.ILoop.savingReplayStack(ILoop.scala:91) at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:108) at org.apache.spark.repl.SparkILoop$$anonfun$process$1$$anonfun$org$apache$spark$repl$SparkILoop$$anonfun$$loopPostInit$1$1.apply$mcV$sp(SparkILoop.scala:211) at org.apache.spark.repl.SparkILoop$$anonfun$process$1$$anonfun$org$apache$spark$repl$SparkILoop$$anonfun$$loopPostInit$1$1.apply(SparkILoop.scala:199) at org.apache.spark.repl.SparkILoop$$anonfun$process$1$$anonfun$org$apache$spark$repl$SparkILoop$$anonfun$$loopPostInit$1$1.apply(SparkILoop.scala:199) at scala.tools.nsc.interpreter.ILoop$$anonfun$mumly$1.apply(ILoop.scala:189) at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:221) at scala.tools.nsc.interpreter.ILoop.mumly(ILoop.scala:186) at org.apache.spark.repl.SparkILoop$$anonfun$process$1.org$apache$spark$repl$SparkILoop$$anonfun$$loopPostInit$1(SparkILoop.scala:199) at org.apache.spark.repl.SparkILoop$$anonfun$process$1$$anonfun$startup$1$1.apply(SparkILoop.scala:267) at org.apache.spark.repl.SparkILoop$$anonfun$process$1$$anonfun$startup$1$1.apply(SparkILoop.scala:247) at org.apache.spark.repl.SparkILoop$$anonfun$process$1.withSuppressedSettings$1(SparkILoop.scala:235) at org.apache.spark.repl.SparkILoop$$anonfun$process$1.startup$1(SparkILoop.scala:247) at org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply$mcZ$sp(SparkILoop.scala:282) at org.apache.spark.repl.SparkILoop.runClosure(SparkILoop.scala:159) at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:182) at org.apache.spark.repl.Main$.doMain(Main.scala:78) at org.apache.spark.repl.Main$.main(Main.scala:58) at org.apache.spark.repl.Main.main(Main.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52) at org.apache.spark.deploy.SparkSubmit.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:851) at org.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:167) at org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:195) at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:86) at org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:926) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:935) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) 20/05/21 20:50:12 WARN cluster.YarnSchedulerBackend$YarnSchedulerEndpoint: Attempted to request executors before the AM has registered! 20/05/21 20:50:12 WARN metrics.MetricsSystem: Stopping a MetricsSystem that is not running
运行spark-shell是报错
解决方法: 修改配置文件
yarn.app.mapreduce.am.resource.mb =4g yarn.nodemanager.resource.memory-mb=8g
yarn.scheduler.maximum-allocation-mb=4g
标签:lang,1024,anonfun,scala,SparkILoop,executor,apache,org,spark 来源: https://www.cnblogs.com/erlou96/p/12933548.html