编程语言
首页 > 编程语言> > 查找算法

查找算法

作者:互联网

线性查找

 //线性查找
    public static int seqSearch(int[] arr,int value){
        for (int i = 0; i < arr.length; i++) {
            if (arr[i] == value){
                return i;
            }
        }
        return -1;
    }

二分法查找(递归)

只适用于有序数组

package 算法.search;

import java.util.ArrayList;

//二分法(数组必须是有序的)
public class BinarySearch {
    public static void main(String[] args) {
        int array[] = {1,2,3,4,5,5,5,5,6,7,7,8,9};
        //int index = binarySearch(array,0,array.length-1,5);
        ArrayList<Integer> index = binarySearch2(array,0,array.length-1,5);
        System.out.println(index);
    }

    //二分法(数组必须是有序的)
    public static int binarySearch(int[] arr,int left,int right,int findVal){

        if (left>right){
            return -1;
        }
        int mid = (left + right)/2;
        int midVal = arr[mid];

        if (findVal > midVal){
            return binarySearch(arr,mid + 1,right,findVal);
        }else if (findVal < midVal){
            return binarySearch(arr,left,mid - 1,findVal);
        }else {
            return mid;
        }
    }


    //二分法(数组必须是有序的)   返回多个值的索引
    public static ArrayList<Integer> binarySearch2(int[] arr, int left, int right, int findVal){

        if (left>right){
            return new ArrayList<Integer>();
        }
        int mid = (left + right)/2;
        int midVal = arr[mid];

        if (findVal > midVal){
            return binarySearch2(arr,mid + 1,right,findVal);
        }else if (findVal < midVal){
            return binarySearch2(arr,left,mid - 1,findVal);
        }else {
            ArrayList<Integer> resIndexlist = new ArrayList<Integer>();

            int temp = mid - 1;
            while (true){
                if (temp < 0 || arr[temp] != findVal){
                    break;
                }
                resIndexlist.add(temp);
                temp -=1;
            }
            resIndexlist.add(mid);

            temp = mid + 1;
            while (true){
                if (temp > arr.length - 1 || arr[temp] != findVal){
                    break;
                }
                resIndexlist.add(temp);
                temp +=1;
            }
            return resIndexlist;
        }
    }

}

插值查找

规则:

  1. 对于数据量大,关键字分布比较怕均匀
//插值查找(数组必须是有序的)
    public static int insertValueSearch(int[] arr,int left,int right,int findVal){

        if (left>right || findVal < arr[0] || findVal > arr[arr.length - 1]){
            return -1;
        }
        int mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]);
        int midVal = arr[mid];

        if (findVal > midVal){
            return insertValueSearch(arr,mid + 1,right,findVal);
        }else if (findVal < midVal){
            return insertValueSearch(arr,left,mid - 1,findVal);
        }else {
            return mid;
        }
    }

斐波那契查找算法(黄金分割法)

package 算法.search;

import java.util.Arrays;
//斐波那契查找算法
public class FibonacciSearch {
    public static int maxSize = 20;
    public static void main(String[] args) {
        int[] array = {1,8,10,89,1000,1234};
        System.out.println(fibonacciSearch(array,1000));
    }

    public static int[] fib(){
        int[] f = new int[maxSize];
        f[0] = 1;
        f[1] = 1;
        for (int i = 2; i < maxSize; i++) {
            f[i] = f[i-1] + f[i - 2];
        }
        return f;
    }

    public static int fibonacciSearch(int[] a,int key){
        int low = 0;
        int high = a.length - 1;
        int k = 0;
        int mid = 0;
        int f[] = fib();
        while (high > f[k] - 1){
            k++;
        }
        int[] temp = Arrays.copyOf(a,f[k]);
        for (int i = high + 1; i < temp.length; i++) {
            temp[i] = a[high];
        }

        while (low <= high){
            mid = low + f[k-1] - 1;
            if (key < temp[mid]){
                high = mid - 1;
                k--;
            }else if (key > temp[mid]){
                low = mid + 1;
                k -= 2;
            }else {
                if (mid < high){
                    return mid;
                }else {
                    return high;
                }
            }
        }
        return -1;
    }
}


你知道的越多,你不知道的越多。
有道无术,术尚可求,有术无道,止于术。
如有其它问题,欢迎大家留言,我们一起讨论,一起学习,一起进步

斗士(Carroll) 发布了94 篇原创文章 · 获赞 62 · 访问量 5839 私信 关注

标签:arr,return,int,findVal,mid,算法,查找,left
来源: https://blog.csdn.net/qq_40722827/article/details/103877059