编程语言
首页 > 编程语言> > python爬取“美团美食”汕头地区的所有店铺信息

python爬取“美团美食”汕头地区的所有店铺信息

作者:互联网

一、目的

获取美团美食每个店铺所有的评论信息,并保存到数据库和本地

二、实现步骤

获取所有店铺的poiId

首先观察详情页的url,后面是跟着一串数字的,而这一串数字代表着每个店铺特有的id号,我们称之为poiId。所以,要想爬取所有店铺的评论数据,就必须爬取所有店铺的id号。

 

因此,退回到上一级页面,打开控制台,逐个点击请求的preview选项,找出携带有poiId数据的请求。

而我们要做的,就是找出这个请求的规律,模拟客服端发送此请求,这样子我们就可以获得所有店铺的poiId了。

接下来就是找规律了,我们观察发送的请求。很长对不对,不要紧,我们慢慢分析。

cityName=%E6%B1%95%E5%A4%B4& (城市中文名字经过urlencode编码)

cateId=0&areaId=0&sort=&dinnerCountAttrId=& (固定的一段字符串,具体意义未知)

page=1 (页码)

userId=&uuid=9efd650a0d204774ba7a.1577010898.1.0.0 (一段cookie,每隔一段时间会更新,用于验证用户的身份,由后端传递到前端。F12打开控制台,点击Application的Cookies查看得知)

platform=1&partner=126& (一段固定的字符串)

originUrl=https%3A%2F%2Fst.meituan.com%2Fmeishi%2F(对该网页的url进行urlencode)

riskLevel=1&optimusCode=10 (一段固定的字符串)

_token=eJx1j1tvozAQhf%2BLX4OCDZiYvEEuu5ASQqGQpOoDIdxrmmAn0FT972u0uw%2F7sNJIc%2BbM0aeZL9DZZzBHEBoQSuCedWAO0BROdSABzsQGz2YQQQNjREQg%2Fccjmq5L4NRFSzB%2FJYohEUzeRuNZzK8IC6QgwzfptzZ0IRVN1BiyRQaUnF%2FYXJYZn9Ks4reknaYfVBaalZUsbvhPAAgCDUcCgaqkYTQazWiInvzp%2FO%2FsiqcEi1VFK1Tm9O91irhZr%2Fxyfy%2B1zVatrYPb7AezdSz%2FVL0Xvem5rDvuNfVHs3ZsDzaLhq%2FCa2XGrTFpL3Iw%2BAuTDMWS1rDcHnaIDC95PZucLrKMO9s77lhAbvoLjjM3juLwqt4CPSx6Kyw3k1SlqbM9J9q9R8vIoQ6nnoIvm%2FXjnq%2BLY%2FdQ%2FDJ%2F3pVtmlKVLvIocH5Gp9uTlusHjz662La4e93lONGGSjnbbbcOlivn8MjqzxwmW3WTqYteiXXGFKsk%2FgTZMFfB9y82H5QP (token令牌,每隔一段时间会更新)

而在这些参数中,有几个参数是必须的(皆可通过正则表达式获取):

 

uuid(可以从cookie中获得,按理来说应该每隔一段时间就应该重新获取一次,但是我获取了一次之后就可以一直用,个人认为是后端没有验证该字段);

city(获取店铺所在的城市名);

page(页码。获取店铺数量,然后除以每页最大显示条目可得;该字段在“meishi/“文件里ctrl+F搜索totalCount可得)。

下面就是获取这几个参数的config.py文件源代码:

#获得城市名,uuid和商铺数目以及页数

import requests

import re  #用于正则表达式

import math

 

#获得城市名,uuid和商铺数目以及页数

def getInfo():

    """获取uuid"""

    url = 'https://st.meituan.com/meishi/'  #汕头美食

    headers = {

        'Host': 'st.meituan.com',

        'Referer': 'https://st.meituan.com/',

        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/77.0.3865.120 Safari/537.36',

    }

    res = requests.get(url, headers=headers).text

    # findall(pattern, string, flags=0),返回string中所有与pattern相匹配的全部字串,r表示原生字符例:\n不表示换行。re.S表示作用域拓展到整个字符串,即包括换行符

    if res:

        uuid = re.findall(r'"uuid":"(.*?)"', res, re.S)[0]

        city = re.findall(r'"chineseFullName":"(.*?)"',res,re.S)[0]

        shopsNum = re.findall(r'"totalCounts":(\d+)',res,re.S)[0]

        with open('./output_file/uuid_city_shopsNum.log', 'w',encoding="utf-8") as f:

            print('chrome_uuid:'+uuid+'\n'+'city:'+city+'\n'+'shopsNum:'+str(shopsNum))

            f.write('chrome_uuid:'+uuid+'\n'+'city:'+city+'\n'+'shopsNum:'+str(shopsNum))

    ans = {

        'uuid':uuid,

        'city':city,

        'shopsNum':int(shopsNum),

        'pages':math.ceil(int(shopsNum)/15),

    }

    return ans

ans = getInfo()

破解token参数

_token参数的构造:

解密: 由现成_token参数结尾的’='猜测进行了base64加密,于是进行base64解密,得到bytes类型字符串,进行zlib解压后得出_token的加密生成字典,其中有两个比较 重要的变化参数为ts和cts,其中ts为13位时间戳,cts则为ts+100*1000。还有一个sign参数,形式与_token参数一致,再对sign参数进行一次同样的解密,得到一个字符串,其中的uuid在首页源码中可以正则匹配出来。

 

加密: 由上可知_token参数的构造过程,进行了两次zlib压缩和base64编码加密。第一次加密对象位sign参数。第二次加密就是生成_token的字典,构造好字典后再进行一次上述加密即为_token。

 

另外,需要特别说明的是,_token参数破解了之后,仍会有一些参数是常量,一些是变量,但模拟的过程仍与前面模拟的过程是相似的,所以在这一不一一赘述,详见代码。

 

get_shops.py源代码:

'''

    用于保存所有页面的ajax_url

'''

import base64, zlib

import time

import random

import pandas as pd

import os

import urllib.parse

import json

import re  #用于正则表达式

from config import ans

 

print('ans:',ans)

 

get_shops_url = [] #用于存储所有生成的ajax_url

 

for page in range(1,ans['pages']+1):

    DATA = {

        "cityName": '汕头',

        "cateId": '0',

        "areaId": "0",

        "sort": "",

        "dinnerCountAttrId": "",

        "page": page,

        "userId": "",

        "uuid": ans['uuid'],

        "platform": "1",

        "partner": "126",

        "originUrl": "https://{}.meituan.com/meishi".format('st'),

        "riskLevel": "1",

        "optimusCode": "1"

    }

    SIGN_PARAM = "areaId={}&cateId={}&cityName={}&dinnerCountAttrId={}&optimusCode={}&originUrl={}/pn{}/&page={}&partner={}&platform={}&riskLevel={}&sort={}&userId={}&uuid={}".format(

        DATA["areaId"],

        DATA["cateId"],

        re.findall(r"b'(.+?)'",str(DATA["cityName"].encode(encoding='UTF-8',errors='strict')))[0],

        DATA["dinnerCountAttrId"],

        DATA["optimusCode"],

        DATA["originUrl"],

        DATA["page"],

        DATA["page"],

        DATA["partner"],

        DATA["platform"],

        DATA["riskLevel"],

        DATA["sort"],

        DATA["userId"],

        DATA["uuid"]

    )

 

    def encrypt(data):

        """压缩编码"""

        binary_data = zlib.compress(data.encode())      #二进制压缩

        base64_data = base64.b64encode(binary_data)     #base64编码

        return base64_data.decode()                     #返回utf-8编码的字符串

 

    def token():

        """生成token参数"""

        ts = int(time.time()*1000)  #获取当前的时间,单位ms

        #brVD和brR为设备的外汇返佣,浏览器的宽高等参数,可以使用事先准备的数据自行模拟

        json_path = os.path.dirname(os.path.realpath(__file__))+'\\utils\\br.json'

        df = pd.read_json(json_path)

        brVD,brR_one,brR_two = df.iloc[random.randint(0,len(df)-1)]#iloc基于索引位来选取数据集

        TOKEN_PARAM ={

                "rId": 100900,

                "ver": "1.0.6",

                "ts": ts,  # 变量

                "cts": ts + random.randint(100, 120),  # 经测,cts - ts 的差值大致在 90-130 之间

                "brVD": eval(brVD),  # 变量

                "brR": [eval(brR_one), eval(brR_two), 24, 24],

                "bI": ["https://st.meituan.com/meishi/", ""],  # 从哪一页跳转到哪一页

                "mT": [],

                "kT": [],

                "aT": [],

                "tT": [],

                "aM": "",

                "sign": encrypt(SIGN_PARAM)

        }

        # 二进制压缩

        binary_data = zlib.compress(json.dumps(TOKEN_PARAM).encode())

        # print('binary_data:',json.dumps(TOKEN_PARAM).encode())

        # base64编码

        base64_data = base64.b64encode(binary_data)

        # print('这里是token的使用了ascii编码之前的:', base64_data)

        # print('这里是token的使用了ascii编码之后的:',urllib.parse.quote(base64_data.decode(),'utf-8'))

        return urllib.parse.quote(base64_data.decode(),'utf-8')

 

    AJAXDATA = {

        'cityName': '%E6%B1%95%E5%A4%B4',

        'cateId': 0,

        'areaId': 0,

        'sort': '',

        'dinnerCountAttrId': '',

        'page': page,

        'userId': '',

        'uuid': ans['uuid'],

        'platform': 1,

        'partner': 126,

        'originUrl': 'https%3A%2F%2Fst.meituan.com%2Fmeishi%2F',

        'riskLevel': 1,

        'optimusCode': 10,

        '_token': token()

    }

 

    urlParam = 'https://st.meituan.com/meishi/api/poi/getPoiList?cityName={}&cataId={}&areaId={}&sort={}&dinnerCountAttrId={}' \

               '&page={}&userId={}&uuid={}&platform={}&partner={}&originUrl={}&riskLevel={}&optimusCode={}&_token={}'.format(

        AJAXDATA['cityName'],

        AJAXDATA['cateId'],

        AJAXDATA['areaId'],

        AJAXDATA['sort'],

        AJAXDATA['dinnerCountAttrId'],

        AJAXDATA['page'],

        AJAXDATA['userId'],

        AJAXDATA['uuid'],

        AJAXDATA['platform'],

        AJAXDATA['partner'],

        AJAXDATA['originUrl'],

        AJAXDATA['riskLevel'],

        AJAXDATA['optimusCode'],

        AJAXDATA['_token'],

    )

然后,将ajax请求到的店铺数据保存到txt/csv/mongoDB数据库。因为在其他地方也可能调用到相应的方法(增删改查),因此,单独将他们写在另外一个.py文件里,然后封装成类。其中,save_data.py文件源代码如下:'''

    定义类用于保存数据到数据库,txt或者csv

'''

import pandas as pd           # 将数据保存到csv中

import pymongo

 

class MongoDB():

    def __init__(self,formName,collection='',result=''):

        self.host = 'localhost'

        self.port = 27017

        self.databaseName = 'meituan'

        self.formName = formName

        self.result = result

        self.collection = collection

 

    # 连接数据库

    def collect_database(self):

        client = pymongo.MongoClient(host=self.host, port=self.port)  # 连接MongoDB

        db = client[self.databaseName]  # 选择数据库

        collection = db[self.formName]  # 指定要操作的集合,表

        print('数据库已经连接')

        return collection

 

    # 保存数据

    def save_to_Mongo(self):

        # collection = self.collect_database()

        try:

            if self.collection.insert_many(self.result):

                # print('存储到MongoDB成功', self.result)

                print('存储到MongoDB成功')

        except Exception:

            print('存储到MongoDb失败', self.result)

 

    # 查询数据

    def selectMongoDB(self):

        # collection = self.collect_database()

        print('评论数据的总长度为:',self.collection.count_documents({}))

        # print('正在查询数据库')

        # for x in self.collection.find():

        #     print(x)

 

    # 删除数据

    def delete_database(self):

        self.collection.delete_many({})  # 删除数据库内容

        print('已清空数据库')

 

class SaveDataInFiles():

    def __init__(self,csv_url='',txt_url='',results=''):

        # 需要保存的数据

        self.results = results

        self.csv_url = csv_url

        self.txt_url = txt_url

 

    # 出口文件

    def saveResults(self):

        self.saveInCsv()

        self.saveInTxt()

 

    # 将结果ip保存到D:\python\meituan\output_file\proxyIp_kuai.txt中

    def saveInTxt(self):

        txt = open(self.txt_url, 'w')

        txt.truncate()  # 保存内容前先清空内容

        for item in self.results:

            itemStr = str(item)

            txt.write(itemStr)

            txt.write('\n')

        txt.close()

 

    # 将结果保存到D:\python\meituan\output_file\proxyIp_kuai.csv中

    def saveInCsv(self):

        # print('csv:',self.results,self.csv_url)

        csvUrl = self.csv_url

        pd.DataFrame(self.results).to_csv(csvUrl,mode='a',encoding="utf-8-sig")  # 避免保存的中文乱码

        print('保存到csv文件中成功了')

然后,调用相应的方法将ajax获得的数据保存起来。最重要的是保存到mongoDB数据库(一般是先连接数据库,然后再执行增删改查的操作),保存到csv文件仅仅是为了直观的观察数据。save_shops_info.py文件源代码如下:'''

    保存每个列表页所有商铺的基本信息

'''

import requests

import json

from get_shops import get_shops_url

from save_data import MongoDB

from save_data import SaveDataInFiles

 

output = [] #初始化数组,用于保存最终的结果

index = 1

# 定义类获取评论数据

def get_shops_info(ajax_url):

    url = ajax_url  # getshops传递过来的ajax_url

    headers = {

        'Host': 'st.meituan.com',

        'Referer': 'https://st.meituan.com/meishi/',

        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/77.0.3865.120 Safari/537.36',

        'X-Requested-With': 'XMLHttpRequest',

    }

    try:

        response = requests.get(url, headers=headers)

        # print('response:',response)

        # print('response_text:',response.text)

        # print('type(eval(response.text)):',type(eval(response.text)))

        if response.status_code == 200:

            return response.json()

    except requests.ConnectionError as e:

        print('Error', e.args)

 

# 从返回的json字符串中获取想要的字段

def save_shops_info(ajax_url,index):

    items = get_shops_info(ajax_url).get('data').get('poiInfos')

    output.extend(items)

    print('正在追加内容到output数组中')

 

if __name__ == '__main__':

    # for ajaxUrl in get_shops_url:

    #     save_shops_info(ajaxUrl,index)

    #保存数据到数据库中

    collection = MongoDB('shops_info','','').collect_database()    #连接数据库

    # MongoDB('shops_info', collection, '').delete_database()  # 先清空数据库内容

    # MongoDB('shops_info', collection, output).save_to_Mongo()

    # 保存数据到csv中

    # SaveDataInFiles('D:\python\meituan\output_file\shops_info.csv', '', output).saveInCsv()

    #将数据保存到json文件夹中

    # with open('D:\python\meituan\output_file\shops_info.json', 'w') as f:

    #     json.dump(output, f)

    # 查询数据库数据

    MongoDB('shops_info',collection,'').selectMongoDB()

获取每个店铺的评论信息

打开控制台,会发现,获取评论数据的ajax请求和前面获取店铺基本信息的请求相似,如下:

 

Request URL:

https://www.meituan.com/meishi/api/poi/getMerchantComment?uuid=9efd650a0d204774ba7a.1577010898.1.0.0&platform=1&partner=126&originUrl=https%3A%2F%2Fwww.meituan.com%2Fmeishi%2F152376939%2F&riskLevel=1&optimusCode=10&id=152376939&userId=&offset=0&pageSize=10&sortType=1

 

而其中的id=152376939就是我们前面保存的poiId。所以到了这一步,参照前面的方法,我们就可以获取后端传递过来的店铺评论数据了。

最后,将获取到的店铺评论数据保存起来。detailPage_getComments.py源代码如下:# 根据数据库中汕头市外卖商铺信息,爬取所有商铺的评论信息

 

# 爬取美团外卖评论 https://www.meituan.com/meishi/41007600/

import requests  # 模拟浏览器向服务器发出请求

import math

import urllib.parse  # 定义了url的标准接口,实现url的各种抽取

from selenium import webdriver

from save_data import MongoDB

from save_data import SaveDataInFiles

from config import ans

from requests.adapters import HTTPAdapter

 

 

#######################################################################################################################

# 定义类获取商铺评论标签和所有评论

class GetShopComments():

    def __init__(self, shopBasicInfo, uuid, shop_num=''):

        self.comments_ajax_url = "https://www.meituan.com/meishi/api/poi/getMerchantComment?"

        self.ajax_headers = {

            'Host': 'www.meituan.com',

            'Referer': 'https://www.meituan.com/meishi/41007600/',

            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/77.0.3865.120 Safari/537.36',

            'X-Requested-With': 'XMLHttpRequest',

        }

        # 前面GetShopInformation的类中传递过来的最大页数

        self.maxPage = math.ceil(shopBasicInfo['allCommentNum'] / 10)

        self.shopName = shopBasicInfo['title']

        self.poiId = shopBasicInfo['poiId']

        self.uuid = uuid['uuid']

        # self.uuid = uuid

        self.shop_num = shop_num

 

 

    # 获取每个店铺页面上的所有数据(json格式),标签+评论

    def get_comments_in_page(self, items):

        parms = {

            'basicUrl':'https://www.meituan.com/meishi/api/poi/getMerchantComment?',

            'uuid': self.uuid,

            'platform': '1',

            'partner': '126',

            'originUrl': 'https%3A%2F%2Fwww.meituan.com%2Fmeishi%2F' + str(self.poiId) + '%2F',

            'riskLevel': '1',

            'optimusCode': '10',

            'id': self.poiId,

            'userId': '',

            'offset': items,

            'pageSize': '10',

            'sortType': '1',

        }

        url = self.comments_ajax_url + urllib.parse.urlencode(parms)

        # 连接超时,重新连接

        request = requests.Session()

        request.mount('http://', HTTPAdapter(max_retries=3))

        request.mount('https://', HTTPAdapter(max_retries=3))

        try:

            response = request.get(url, headers=self.ajax_headers,timeout=10)

            if response.status_code == 200:

                return response.json()

        # except requests.ConnectionError as e:

        except requests.exceptions.Timeout as e:

            print('Error', e.args)

 

    # 解析json数据,并获取评论数据

    def parse_comments_in_page(self, originJson, page):

        if originJson:

            items = originJson.get('data').get('comments')

            if items:

                for item in items:

                    comments = {

                        'shopName': self.shopName,

                        'page': page,

                        'username': item.get('userName'),

                        'user-icon': item.get('userUrl'),

                        'stars': item.get('star'),

                        'user-comment': item.get('comment'),

                        'user-comment-time': item.get('commentTime'),

                        'user-comment-zan': item.get('zanCnt')}

                    yield comments

 

    # 解析json数据,并获取标签评论数据

    def parse_comments_tags(self):

        if self.maxPage > 0:

            original_data = self.get_comments_in_page(1)

            if original_data:

                tags = original_data.get('data').get('tags')

                if tags:

                    for item in tags:

                        item['poiId'] = self.poiId

                        item['shopName'] = self.shopName

                    return tags

    # 评论数据的入口和出口

    def get_comments(self):

        commentsData = []  # 用于存储最终的结果,然后将结果保存到数据库中

        if self.maxPage > 0:

            for page in range(1, self.maxPage + 1):

                print('我现在已经爬取到第' + str(shop_num) + '家店铺的第' + str(page) + '页啦~')

                original_data = self.get_comments_in_page(page)

                results = self.parse_comments_in_page(original_data, page)

                for result in results:

                    commentsData.append(result)

            return commentsData

 

    # 评论标签数据

 

 

#######################################################################################################################

 

if __name__ == '__main__':

    shop_num = 0  # 用于统计爬到哪一家店铺

    # 开启新数据库用于保存评论数据

    tags_collection = MongoDB('shops_tags', '', '').collect_database()  # 连接数据库

    comments_collection = MongoDB('shops_comments', '', '').collect_database()  # 连接数据库

    # 查看数据库内容

    # MongoDB('shops_comments',comments_collection).selectMongoDB()

    # 清空数据库

    # MongoDB('shops_tags', tags_collection).delete_database()

    # MongoDB('shops_comments', comments_collection).delete_database()

    # 获取前面数据库中保存的商家数据

    collection = MongoDB('shops_info', '', '').collect_database()  # 连接数据库

    shops = collection.find({}, {"poiId": 1, "title": 1, "allCommentNum": 1})  # 只输出id和title字段,第一个参数为查询条件,空代表查询所有

    shops = list(shops)  # 将游标转换成数组

    for items in shops[0:]:

        shop_num = shop_num + 1  # 用于统计爬到哪一家店铺

        commentsRes = GetShopComments(items, ans, shop_num).get_comments()  # 获取店铺的所有评论

        tagsRes = GetShopComments(items, ans).parse_comments_tags()  # 获取评论标签

        MongoDB('shops_tags', tags_collection, tagsRes).save_to_Mongo()  # 保存评论标签数据

        MongoDB('shops_comments', comments_collection, commentsRes).save_to_Mongo()  # 保存评论数据

        SaveDataInFiles('D:\python\meituan\output_file\shop_comments.csv', '', commentsRes).saveInCsv()  # 保存评论数据到csv文件中

        SaveDataInFiles('D:\python\meituan\output_file\shop_tags.csv', '', tagsRes).saveInCsv()  # 保存评论数据到csv文件中

原文链接:https://blog.csdn.net/qq_40511157/article/details/103641937

标签:uuid,get,python,美团,爬取,url,import,shops,self
来源: https://www.cnblogs.com/benming/p/12091145.html