EEMD算法原理与python实现
作者:互联网
目录
本教程为脑机学习者Rose原创(转载请联系作者授权)发表于公众号:脑机接口社区(微信号:Brain_Computer).QQ交流群:903290195
EMD算法的不足
EMD算法能将原始信号不断进行分解,获取符合一定条件下的IMF分量。这些 IMF 分量之间的频率往往不同,这就为其在谐波检测方向的使用提供了一种思路。EMD 算法以其正交性、收敛性等特点被广泛用于信号处理等领域,但并不像小波分析或者神经网络那样,有固定的数学模型,因此它的一些重要性质仍还没有通过缜密的数学方法证明出。而且对模态分量 IMF 的定义也尚未统一,仅能从信号的零点与极值点的联系与信号的局部特征等综合描述。EMD 从理论到实际运用仍有很长的一段路要走。
EMD 具体的不足体现在以下几个方面:
IMF 分解时存在着模态混叠现象,也就是说一个IMF中会包含不同时间尺度的特征成分。一方面是由于信号本身的原因,另一方面是EMD算法本身的缺陷。
在分解出IMF的过程中需要迭代很多次,而停止迭代的条件缺乏一个标准,所以不同的停止迭代的条件得到的IMFs也是不同的。
为了解决EMD中存在的模态混叠等问题,Huang通过了一种噪声辅助信号处理(NADA),将信号中加入了噪声进行辅助分析。在EMD 方法中,得到合理IMF 的能力取决于信号极值点的分布情况,如果信号极值点分布不均匀,会出现模态混叠的情况。为此,Huang将白噪声加入待分解信号,利用白噪声频谱的均匀分布,当信号加在遍布整个时频空间分布一致的白噪声背景上时,不同时间尺度的信号会自动分布到合适的参考尺度上,并且由于零均值噪声的特性,经过多次平均后,噪声将相互抵消,集成均值的结果就可作为最终结果。
为抑制各 IMF 分量之间出现混频,Norden Huang在 EMD分解中,运用添加均值为零的高斯白噪声进行辅助分析,即EEMD算法。
EEMD算法的基本原理
EEMD步骤
EEMD方法实质上是对EMD算法的一种改进,主要是根据白噪声均值为零的特性,在信号中对此加入白噪声,仍然用EMD进行分解,对分解的结果进行平均处理,平均处理的次数越多噪声给分解结果带来的影响就越小。设信号为$x(t)$,具体的分解步骤如下:
步骤1:
将$x(t)$设定平均处理次数为$M$,初始$i=1,2,\cdots,M$。
步骤2:
给$x(t)$添加具有一定幅值的随机白噪声$n_{i}(t)$,组成新的一系列信号:
$$x_{i}(t)=x(t)+n_{i}(t) i=1,2,\cdots,M$$
步骤3:
将新的序列号$x_{i}(t)$进行EMD分解。
$$x_{i}(t)=\sum_{n=1}^{n}c_{i,n}(t)+r_{i,n}(t)$$
$n$为EMD分解IMF的数量,$c_{i,n}(t)$是IMFs,$r_{i,n}(t)$是残余分量。
步骤4:
重复2步骤、3步骤M次,每次添加不同幅值的白噪声,获得一系列IMFs。通过IMFs平均值,求得EEMD的IMF分量$c_{n}(t)$.
$$[{c_{1,n}(t)},{c_{2,n}(t)},\cdots,{c_{M,n}(t)}] ,n=1,2,\cdots,N$$
$$c_{n}(t)=\frac{1}{M}\sum_{i=1}{M}c_{i,n}(t) ,i=1,2,\cdots,M;n=1,2,\cdots,N$$
EEMD和EMD性能对比
EMD算法过程中出现模态混叠的两种现象:
1)不同的时间尺度成分出现在同一个IMF分量当中。
2)相同的尺度分布在不同的IMF分量当中。
此现象会导致时频分布错误,使IMF分量失去真实的物理意义。EEMD分解算法基于白噪声频谱均衡的分布特点来均衡噪声,使得频率的分布趋于均匀。添加的白噪声不同信号的幅值分布点带来的模态混叠效应。
python实现EEMD案例
# 导入工具包
import numpy as np
from PyEMD import EEMD, EMD, Visualisation
import pylab as plt
定义Signal函数,产生信号,并对信号进行EEMD提取特征,最后绘制。
说明,这里是为了演示方便,下面在一个函数中进行所有操作的写法并不推荐
def Signal():
global E_imfNo
E_imfNo = np.zeros(50, dtype=np.int)
# EEMD options
max_imf = -1
"""
信号参数:
N:采样频率500Hz
tMin:采样开始时间
tMax:采样结束时间 2*np.pi
"""
N = 500
tMin, tMax = 0, 2 * np.pi
T = np.linspace(tMin, tMax, N)
# 信号S:是多个信号叠加信号
S = 3 * np.sin(4 * T) + 4 * np.cos(9 * T) + np.sin(8.11 * T + 1.2)
# EEMD计算
eemd = EEMD()
eemd.trials = 50
eemd.noise_seed(12345)
E_IMFs = eemd.eemd(S, T, max_imf)
imfNo = E_IMFs.shape[0]
# Plot results in a grid
c = np.floor(np.sqrt(imfNo + 1))
r = np.ceil((imfNo + 1) / c)
plt.ioff()
plt.subplot(r, c, 1)
plt.plot(T, S, 'r')
plt.xlim((tMin, tMax))
plt.title("Original signal")
for num in range(imfNo):
plt.subplot(r, c, num + 2)
plt.plot(T, E_IMFs[num], 'g')
plt.xlim((tMin, tMax))
plt.title("Imf " + str(num + 1))
plt.show()
if __name__ == "__main__":
Signal()
参考
基于稳态视觉诱发电位的脑-机接口系统研究
EEMD算法原理与Python实现
脑机学习者Rose笔记分享,QQ交流群:903290195
更多分享,请关注公众号
标签:EMD,IMF,python,噪声,算法,信号,np,EEMD 来源: https://www.cnblogs.com/RoseVorchid/p/12030980.html