java-使用WEKA API定义输入数据以进行聚类
作者:互联网
我想聚类经度和纬度指定的点.我正在使用WEKA API
问题出在Instances实例= new Instances(40.01,1.02);
那么,如何在不使用ARFF文件的情况下指定输入数据?我只想将数组读入实例.
import java.io.Reader;
import weka.clusterers.ClusterEvaluation;
import weka.clusterers.SimpleKMeans;
import weka.core.Instances;
public class test {
/**
* @param args
*/
public static void main(String[] args) {
Instances instances = new Instances(40.01,1.02);
SimpleKMeans simpleKMeans = new SimpleKMeans();
simpleKMeans.buildClusterer(instances);
ClusterEvaluation eval = new ClusterEvaluation();
eval.setClusterer(simpleKMeans);
eval.evaluateClusterer(new Instances(instances));
eval.clusterResultsToString();
}
}
解决方法:
我相信您必须创建自己的实例.下面,我展示了如何从具有两个属性(纬度和经度)的数组创建新实例.
import weka.core.Attribute;
import weka.core.DenseInstance;
import weka.core.FastVector;
import weka.core.Instances;
public class AttTest {
public static void main(String[] args) throws Exception
{
double[] one={0,1,2,3};
double[] two={3,2,1,0};
double[][] both=new double[2][4];
both[0]=one;
both[1]=two;
Instances to_use=AttTest.buildArff(both);
System.out.println(to_use.toString());
}
public static Instances buildArff(double[][] array) throws Exception
{
FastVector atts = new FastVector();
atts.addElement(new Attribute("lat")); //latitude
atts.addElement(new Attribute("lon")); //longitude
// 2. create Instances object
Instances test = new Instances("location", atts, 0);
// 3. fill with data
for(int s1=0; s1 < array[0].length; s1=s1+1)
{
double vals[] = new double[test.numAttributes()];
vals[0] = array[0][s1];
vals[1] = array[1][s1];
test.add(new DenseInstance(1.0, vals));
}
return(test);
}
}
标签:api,weka,cluster-analysis,java 来源: https://codeday.me/bug/20191122/2060005.html