python-用Multiindex列和不规则的时间戳连接Pandas DataFrames
作者:互联网
我在列表中有很多单独的数据框,每个数据框都有多索引列,并且是针对不同时间段和长度的时间序列.我想做三件事:
>汇集所有单独的数据框
>任何具有相同多索引列的数据框都会追加和排序
沿时间轴
>具有不同多索引列的数据框将并置
列轴(轴= 1)
我知道默认情况下,`pandas.concat(objs,axis = 1)合并列并对行索引进行排序,但是我也希望具有相同标签和级别的数据帧在较长的时间轴上连接,而不是完全将它们放在一边并排.
我还要提到的是,具有相同标签和级别的数据帧处于相互连接但不重叠的不同时间段.
举个例子:
first,second,third = rand(5,2),rand(5,2),rand(10,2)
a = pd.DataFrame(first, index=pd.DatetimeIndex(start='1990-01-01', periods=5, freq='d'))
a.columns = pd.MultiIndex.from_tuples([('A','a'),('A','b')])
b = pd.DataFrame(second, index=pd.DatetimeIndex(start='1990-01-06', periods=5, freq='d'))
b.columns = pd.MultiIndex.from_tuples([('A','a'),('A','b')])
c = pd.DataFrame(third, index=pd.DatetimeIndex(start='1990-01-01', periods=10, freq='d'))
c.columns = pd.MultiIndex.from_tuples([('B','a'),('B','b')])
pd.concat([a,b,c], axis=1)
给出以下内容:
Out[3]:
A B
a b a b a b
1990-01-01 0.351481 0.083324 NaN NaN 0.060026 0.124302
1990-01-02 0.486032 0.742887 NaN NaN 0.570997 0.633906
1990-01-03 0.145066 0.386665 NaN NaN 0.166567 0.147794
1990-01-04 0.257831 0.995324 NaN NaN 0.630652 0.534507
1990-01-05 0.446912 0.374049 NaN NaN 0.311473 0.727622
1990-01-06 NaN NaN 0.920003 0.051772 0.731657 0.393296
1990-01-07 NaN NaN 0.142397 0.837654 0.597090 0.833893
1990-01-08 NaN NaN 0.506141 0.056407 0.832294 0.222501
1990-01-09 NaN NaN 0.655442 0.754245 0.802421 0.743875
1990-01-10 NaN NaN 0.195767 0.880637 0.215509 0.857576
有一个简单的方法来做到这一点吗?
d = a.append(b)
pd.concat([d,c], axis=1)
Out[4]:
A B
a b a b
1990-01-01 0.351481 0.083324 0.060026 0.124302
1990-01-02 0.486032 0.742887 0.570997 0.633906
1990-01-03 0.145066 0.386665 0.166567 0.147794
1990-01-04 0.257831 0.995324 0.630652 0.534507
1990-01-05 0.446912 0.374049 0.311473 0.727622
1990-01-06 0.920003 0.051772 0.731657 0.393296
1990-01-07 0.142397 0.837654 0.597090 0.833893
1990-01-08 0.506141 0.056407 0.832294 0.222501
1990-01-09 0.655442 0.754245 0.802421 0.743875
1990-01-10 0.195767 0.880637 0.215509 0.857576
这里的关键是我不知道如何在列表中对数据帧进行排序,我基本上需要一些知道何时要concat(obj,axis = 1)或concat(obj,axis = 0)的东西,可以做到这一点来组合我的数据框列表.也许熊猫中已经有某些东西可以做到这一点?
解决方法:
我不确定是否有一种方法可以做到这一点(可能有)…
这是我考虑创建一个空框架然后填充它的一次:
In [11]: frames = [a, b, c]
获取其索引和列的并集:
In [12]: index = sum(x.index for x in frames)
cols = sum(x.columns for x in frames)
In [13]: res = pd.DataFrame(index=index, columns=cols)
在每个框架中填写此标签(按标签):
In [14]: for df in [a, b, c]:
res.loc[df.index, df.columns] = df
In [15]: res
Out[15]:
A B
a b a b
1990-01-01 0.8516285 0.4087078 0.577000 0.595293
1990-01-02 0.6544393 0.4377864 0.851378 0.595919
1990-01-03 0.3123428 0.03825423 0.834704 0.989195
1990-01-04 0.2314499 0.4971448 0.343455 0.770400
1990-01-05 0.1982945 0.9031414 0.466225 0.463490
1990-01-06 0.7370323 0.3923151 0.263120 0.892815
1990-01-07 0.09038236 0.8778266 0.643816 0.049769
1990-01-08 0.7199705 0.02114493 0.766267 0.472471
1990-01-09 0.06733081 0.443561 0.984558 0.443647
1990-01-10 0.4695022 0.5648693 0.870240 0.949072
标签:concat,multi-index,pandas,time-series,python 来源: https://codeday.me/bug/20191121/2053016.html