编程语言
首页 > 编程语言> > Python-多处理意外结果

Python-多处理意外结果

作者:互联网

我有一些包含迭代器的代码,效果很好:

import multiprocessing

m = [0,1,2,3]


class gener(object):
    def __init__(self, m):
        self.m = m
        self.c = 0

    def __iter__(self):
        return self

    def next(self):
        time.sleep(1)
        ret = self.m[self.c]
        self.c += 1
        return ret 


tt  = gener(m)

def gen(t):
    return t.next() 

print gen(tt)
print gen(tt)
print gen(tt)

出:

06001

但是,如果我尝试将其插入并行进程中,则不会得到预期的结果:

import time
import multiprocessing

m = [0,1,2,3]


class gener(object):
    def __init__(self, m):
        self.m = m
        self.c = 0

    def __iter__(self):
        return self

    def next(self):
        time.sleep(1)
        ret = self.m[self.c]
        self.c += 1
        return ret 


tt  = gener(m)

def gen(t):
    return t.next() 

job1 = multiprocessing.Process(target=gen, args=(tt,))
print job1.start()

job2 = multiprocessing.Process(target=gen, args=(tt,))
print job2.start()

job3 = multiprocessing.Process(target=gen, args=(tt,))
print job3.start()

出:

06003

我不知道如何通过并行使用此迭代器.
有谁能够帮助我?
谢谢!

更新:

跟随@Anand S Kumar非常有用的帮助,我更新了我的代码,并且工作正常,除了输出是模棱两可的,目前,我正在尝试找出问题所在,也许这将是另一个线程的问题,也许是Anand会帮助我:)):

from threading import Thread, Lock
import time



m = [0,1,2,3]
starter = 0

class gener(object):
    def __init__(self, m):
        self.m = m
        self.c = 0

    def __iter__(self):
        return self

    def next(self):
        time.sleep(1)
        ret = self.m[self.c]
        self.c += 1
        return ret

tt = gener(m)


def f(t):
    global starter
    lock = Lock()
    lock.acquire()
    try:
        starter = t.next()
    finally:
        lock.release() 


t1 = Thread(target=f,args=(tt,))
t1.start()

t2 = Thread(target=f,args=(tt,))
t2.start()

t3 = Thread(target=f,args=(tt,))
t3.start()

t1.join()
print starter
t2.join()
print starter
t3.join()
print starter

具有相同代码的不同输出:

06005

解决方法:

您正在尝试打印job.start()函数的返回值,该函数不返回任何内容,因此将显示None.

您可以将print语句移到gen(t)函数中,而不是打印job.start()的返回值,例如-

def gen(t):
    print t.next()

然后运行程序,而不打印job.start().

如果要从该函数接收返回值,则可以使用多处理模块中的Pool. [Documentation]

文档中的一个示例-

from multiprocessing import Pool

def f(x):
    return x*x

if __name__ == '__main__':
    pool = Pool(processes=4)              # start 4 worker processes
    result = pool.apply_async(f, [10])    # evaluate "f(10)" asynchronously
    print result.get(timeout=1)           # prints "100" unless your computer is *very* slow
    print pool.map(f, range(10))

但是请注意,您实际上是在创建多个进程,而不是线程,它们不会共享全局变量.

我相信您想要的是线程,也许像下面的示例将帮助您入门-

from threading import Thread, Lock
m = [0,1,2,3]
starter = 0

class gener(object):
    def __init__(self, m):
        self.m = m
        self.c = 0

    def __iter__(self):
        return self

    def next(self):
        ret = self.m[self.c]
        self.c += 1
        return ret 

tt  = gener(m)


def f(t):
    global starter
    lock = Lock()
    lock.acquire()
    try:
        starter = t.next()
    finally:
        lock.release()

t1 = Thread(target=f,args=(tt,))
t1.start()
t2 = Thread(target=f,args=(tt,))
t2.start()
t1.join()
t2.join()

标签:parallel-processing,python
来源: https://codeday.me/bug/20191120/2041260.html