编程语言
首页 > 编程语言> > 分段式Python

分段式Python

作者:互联网

嗨,我正在尝试找出如何使用分段线性函数拟合这些值.我已经阅读了这个问题,但我无法前进(How to apply piecewise linear fit in Python?).在此示例中,显示了如何为2段情况实现分段功能.但是我需要在三段式的情况下进行操作,如图所示. Three segment data

我已经编写了这段代码:

from scipy import optimize
import matplotlib.pyplot as plt
import numpy as np


x1 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11, 12, 13, 14, 15,16,17,18,19,20,21], dtype=float)
y1 = np.array([5, 7, 9, 11, 13, 15, 28.92, 42.81, 56.7, 70.59, 84.47, 98.36, 112.25, 126.14, 140.03,145,147,149,151,153,155])



x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11, 12, 13, 14, 15], dtype=float)
y = np.array([5, 7, 9, 11, 13, 15, 28.92, 42.81, 56.7, 70.59, 84.47, 98.36, 112.25, 126.14, 140.03])

def piecewise(x,x0,x1,y0,y1,k0,k1,k2):
    return np.piecewise(x , [x <= x0, (x>= x1)] , [lambda x:k0*x + y0-k0*x0, lambda x:k1*(x-(x1+x0))-y1, lambda x:k2*x + y1-k2*x1])

p , e = optimize.curve_fit(piecewise_linear, x1, y1)
xd = np.linspace(0, 15, 100)
plt.figure()
plt.plot(x1, y1, "o")
plt.plot(xd, piecewise_linear(xd, *p))

但这是输出

enter image description here

有什么建议吗?我相信问题出在返回np.piecewise(x,[x< = x0,(x> = x1)],[lambda x:k0 * x y0-k0 * x0,lambda x:k1 *(x- (x1 x0))-y1,尤其是在第二λ中的λx:k2 * x y1-k2 * x1].

编辑1:

如果我尝试使用不同的数据,那么A.L.提供的解决方案将无法获得良好的结果.

enter image description here

我得到这个结果:

enter image description here

x=[ 16.01690476,  16.13801587,  14.63628571,  15.32664399,
        15.8145    ,  15.71507143,  15.56107143,  15.553     ,
        15.08734524,  14.97275   ,  15.51958333,  16.61981859,
        16.36589286,  14.78708333,  14.41565476,  13.47763158,
        13.42412281,  12.95551378,  13.66601504,  13.63315789,
        13.21463659,  13.53464286,  14.60130952,  14.7774881 ,
        13.04319048,  12.53385965,  12.65745614,  13.90535714,
        14.82412281,  14.6565    ,  15.09541667,  13.41434524,
        13.66033333,  14.57964286,  13.55416667,  13.43041667,
        13.01137566,  12.76429825,  11.55241667,  11.0634881 ,
        10.92729762,  11.21625   ,  10.72092857,  11.80380952,
        12.55233333,  12.11307143,  11.78892857,  12.45458333,
        11.05539286,  10.69214286,  10.32566667,  11.3439881 ,
         9.69563492,  10.72535714,  10.26180272,   7.77272727,
         6.37704082,   8.49666667,   8.5389881 ,   5.68547619,
         7.00616667,   8.22015873,  10.20315476,  15.35736842,
        12.25158333,  11.09622153,  10.4118254 ,   9.8602381 ,
        10.16727273,  15.10858333,  13.82215539,  12.44719298,
        10.92341667,  11.44565476,  11.43333333,  10.5045    ,
        11.14357143,  10.37625   ,   8.93421769,   9.48444444,
        10.43483333,  10.8659881 ,  10.96166667,  10.12872619,
         9.64663265,   9.29979762,   9.67173469,   8.978322  ,
         9.10419501,   9.45411565,  10.46411565,   7.95739229,
         8.72616667,   7.03892857,   7.32547619,   7.56441667,
         6.61022676,   9.09014739,  10.78141667,  10.85918367,
        11.11665476,  10.141     ,   9.17760771,   8.27968254,
        11.02625   ,  12.34809524,  11.17807018,  11.25416667,
        11.29236905,   9.28357143,   9.77033333,  11.52086168,
         9.8625    ,  12.60281955,  12.42785714,  12.11902256,
        13.1       ,  13.02791667,  13.87779449,  15.09857143,
        13.93935185,  13.69821429,  13.39880952,  12.45692982,
        12.76921053,  13.23708333,  13.71666667,  15.39807143,
        15.27916667,  14.66464286,  13.38694444,  10.97555556,
        10.02191667,  11.99608333,  14.26325   ,  15.40991667,
        15.12908333,  15.76265476,  12.12763158,  15.01641667,
        14.39602381,  12.98532143,  14.98807018,  18.30547619,
        16.7564966 ,  16.82982143,  19.8487013 ,  19.18600907]

y=[ 2.36846863,  2.73722628,  2.77177583,  2.63930636,  2.80864749,
        2.57066667,  2.65277287,  2.57162347,  2.76295667,  2.79835391,
        2.60431154,  2.17326401,  2.67740698,  2.47138153,  2.49882574,
        2.60987338,  2.69935565,  2.60755362,  2.77702029,  2.62996942,
        2.45959517,  2.52750434,  2.73833005,  2.52009   ,  2.80933226,
        1.63807085,  2.49230099,  2.55441614,  3.19256506,  2.52609288,
        1.02931596,  2.40266963,  2.3306463 ,  2.69094276,  2.60779985,
        2.48351648,  2.45131766,  2.40526763,  2.03952569,  1.86217009,
        1.79971848,  1.91772218,  1.85895421,  2.32725731,  2.28189713,
        2.11835833,  2.09636517,  2.2230303 ,  1.85863317,  1.77550406,
        1.68862391,  1.79187765,  1.70887476,  1.81911193,  1.74802483,
        1.65776432,  1.58012849,  1.67781494,  1.62451541,  1.60555884,
        1.56172214,  1.60083809,  1.65256994,  2.74794704,  2.27089627,
        1.80364982,  1.51412482,  1.77738757,  1.56979564,  2.46538633,
        2.37679625,  2.40389294,  2.04165763,  1.82086407,  1.90609219,
        1.87480978,  1.8877854 ,  1.76080074,  1.68369028,  1.57419297,
        1.66470126,  1.74522552,  1.72459756,  1.65510503,  1.72131148,
        1.6254417 ,  1.57091907,  1.68755268,  1.70307911,  1.59445121,
        1.74393783,  1.72913779,  1.66883237,  1.59859545,  1.62335831,
        1.73378184,  1.62621588,  1.79532164,  1.78289992,  1.79475101,
        1.7826266 ,  1.68778918,  1.64484127,  1.62332696,  1.75372393,
        1.99038021,  1.87268137,  1.86124502,  1.82435911,  1.62927102,
        1.66443723,  1.86743516,  1.62745098,  2.20200312,  2.09641026,
        2.26649111,  2.63271605,  2.18050721,  2.57138433,  2.51833359,
        2.74684184,  2.57209998,  2.63762019,  2.30027877,  2.28471286,
        2.40323668,  2.37103313,  2.16414489,  1.01027109,  2.64181007,
        2.45467765,  2.05773672,  1.73624917,  2.05233688,  2.70820669,
        2.65594222,  2.67445635,  2.37212985,  2.48221803,  2.77655216,
        2.62839879,  2.26481307,  2.58005799,  2.1188172 ,  2.14017268,
        2.16459571,  1.95083406,  1.46224418]

解决方法:

拟合分段线性函数是一个非线性优化问题,可能具有局部最优.您看到的结果可能是优化算法陷入困境的局部优化之一.

解决此问题的一种方法是使用不同的初始值重复您的优化算法,并采用最合适的方法.我使用平均绝对误差(MAE)比较彼此之间的不同拟合.

perr = np.sum(np.abs(y1-piecewise(x1, *p)))

我也更改了您的分段功能,因为这对我来说有些混乱.但是它仍然像以前一样是分段功能

进一步认为您忘了将x和xd数组扩展为21的值(这就是为什么绿线提前结束的原因).

from scipy import optimize
import matplotlib.pyplot as plt
import numpy as np


def piecewise(x,x0,x1,y0,y1,k0,k1,k2):
    return np.piecewise(x , [x <= x0, np.logical_and(x0<x, x<= x1),x>x1] , [lambda x:k0*x + y0, lambda x:k1*(x-x0)+y1+k0*x0,
                                                                            lambda x:k2*(x-x1) + y0+y1+k0*x0+k1*(x1-x0)])

x1 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11, 12, 13, 14, 15,16,17,18,19,20,21], dtype=float)
y1 = np.array([5, 7, 9, 11, 13, 15, 28.92, 42.81, 56.7, 70.59, 84.47, 98.36, 112.25, 126.14, 140.03,145,147,149,151,153,155])
x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11, 12, 13, 14, 15,16,17,18,19,20,21], dtype=float)
y = np.array([5, 7, 9, 11, 13, 15, 28.92, 42.81, 56.7, 70.59, 84.47, 98.36, 112.25, 126.14, 140.03,145,147,149,151,153,155])


perr_min = np.inf
p_best = None
for n in range(100):
    k = np.random.rand(7)*20
    p , e = optimize.curve_fit(piecewise, x1, y1,p0=k)
    perr = np.sum(np.abs(y1-piecewise(x1, *p)))
    if(perr < perr_min):
        perr_min = perr
        p_best = p

xd = np.linspace(0, 21, 100)
plt.figure()
plt.plot(x1, y1, "o")
y_out = piecewise(xd, *p_best)
plt.plot(xd, y_out)
plt.show()

这给了我:
enter image description here

p = [6.34259491 15.00000023 2.97272604 7.05498314 2.00751828
  13.88881542 1.99960597]

编辑1

您编辑了问题,这为已编辑的问题提供了答案.
对不起,我在stackoverlfow上是新手,不确定我是否应该发布另一个答案

在第二个数据集中,您向数据添加了噪音.我认为有两种声音.一种高斯噪声,它使点靠近基础的分段线,而离群噪声则使点与原始基础线相距很远.

在后台,您使用的优化算法根据p优化以下内容:
E = sum(平方(y(逐个,x,p)))
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html#scipy.optimize.curve_fit

高斯噪声不是很大的问题.您使用的优化间接假定了这种高斯噪声(通过最小化最小平方误差),并尽可能地拟合了该线.真正的问题来自于异常值.

问题在于离群值离原始功能很远.即使优化尝试使用最佳参数,能量函数E也不会是最小的,因为离群值离原始函数很远,并且该距离甚至是平方,因此它使函数E的最小值偏离了真实参数功能.

那么解决方案是什么?
摆脱异常值.

自动化解决方案是ransac
https://en.wikipedia.org/wiki/RANSAC.

简介:您选择原始数据的随机子集.您希望该子集没有异常值.您可以将函数拟合到子集并丢弃点,这些点与拟合函数相差很远.如果在此步骤中幸存了足够的分数,则可以获取所有幸存的分数并重复拟合.此“内部”集上的错误是对适合度的度量.然后,您重复整个过程并进行最佳的最终拟合.

我相应地调整了脚本:

from scipy import optimize
import matplotlib.pyplot as plt
import numpy as np
def piecewise(x,x0,x1,y0,y1,k0,k1,k2):
    return np.piecewise(x , [x <= x0, np.logical_and(x0<x, x<= x1),x>x1] , [lambda x:k0*x + y0, lambda x:k1*(x-x0)+y1+k0*x0,
                                                                            lambda x:k2*(x-x1) + y0+y1+k0*x0+k1*(x1-x0)])

x = np.array(x)
y = np.array(y)

x1 = x
y1 = y



perr_min = np.inf
p_best = None
for n in range(100):
    idx = np.random.choice(np.arange(len(x)), 10, replace=False)
    x_sample = x[idx]
    y_sample = y[idx]
    k = np.random.rand(7)*20
    try:
        p , e = optimize.curve_fit(piecewise, x_sample,y_sample ,p0=k)
        each_error = np.abs(y-piecewise(x, *p))
        x_inliner = x[each_error < 1]
        y_inlier = y[each_error < 1]
        if(x_inliner.shape[0] < 0.8 * x.shape[0]):
            continue

        p_inlier , e_inlier = optimize.curve_fit(piecewise, x_inliner,y_inlier ,p0=p)
        perr = np.sum(np.abs(y-piecewise(x, *p_inlier)))


        if(perr < perr_min):
            perr_min = perr
            p_best = p_inlier
    except RuntimeError:
        pass

xd = np.linspace(0, 21, 100)
plt.figure()
plt.plot(x, y, "o")
y_out = piecewise(xd, *p_best)
plt.plot(xd, y_out)
print p_best
plt.show()

通过100次重复,我得到以下结果:
Fittting the curve with Ransac and least squares

标签:regression,linear-regression,piecewise,python,numpy
来源: https://codeday.me/bug/20191119/2032984.html