python-由于神秘的TypeError,Scikit-learn GridSearchCV无法使用Silhouette_score拟合EM模型
作者:互联网
以下代码导致:TypeError:__call __()至少接受4个参数(给定3个).
我已经实例化了一个聚类分类器和一个适用于聚类的评分方法.我提供了用于拟合的简单数据集和用于网格搜索的参数字典.我很难看清哪里有错误,并且回溯是毫无帮助的.
from sklearn.mixture import GaussianMixture
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import silhouette_score, make_scorer
parameters = {'n_components': range(1, 6), 'covariance_type': ['full', 'tied', 'diag', 'spherical']}
silhouette_scorer = make_scorer(silhouette_score)
gm = GaussianMixture()
clusterer = GridSearchCV(gm, parameters, scoring=silhouette_scorer)
clusterer.fit(data)
追溯是神秘的,据我所知,我完全遵循sklearn文档中针对GridSearchCV所述的语法和工作流程.我在这里可能做错了什么会导致此错误?
以下是数据的内容:
Dimension 1 Dimension 2
0 -0.837489 -1.076500
1 1.746697 0.193893
2 -0.141929 -2.772168
3 -2.809583 -3.645926
4 -2.070939 -2.485348
.. ... ...
401 -0.477716 -0.347241
402 0.742407 0.005890
403 -2.152810 5.385891
404 -0.074108 -1.691082
405 0.555363 -0.002872
416 -1.597249 -0.804744
这是回溯的最后几行:
/usr/local/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self)
129
130 def __call__(self):
--> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
132
133 def __len__(self):
/usr/local/lib/python2.7/site-packages/sklearn/model_selection/_validation.pyc in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, return_n_test_samples, return_times, error_score)
258 else:
259 fit_time = time.time() - start_time
--> 260 test_score = _score(estimator, X_test, y_test, scorer)
261 score_time = time.time() - start_time - fit_time
262 if return_train_score:
/usr/local/lib/python2.7/site-packages/sklearn/model_selection/_validation.pyc in _score(estimator, X_test, y_test, scorer)
284 """Compute the score of an estimator on a given test set."""
285 if y_test is None:
--> 286 score = scorer(estimator, X_test)
287 else:
288 score = scorer(estimator, X_test, y_test)
TypeError: __call__() takes at least 4 arguments (3 given)
解决方法:
好吧,事实是,您使用错误的函数作为make_scorer的参数. documentation for make_scorer
说:
score_func – Score function (or loss function) with signature score_func(y_true, y_pred, **kwargs)
并且您要向其中传递带有signature(X,标签,metric =’euclidean’…)的Silhouette_score,这显然与make_scorer的要求不匹配,因此出现错误.
尝试将其更改为其他指标以解决该错误.
标签:grid-search,scikit-learn,python 来源: https://codeday.me/bug/20191111/2021796.html