编程语言
首页 > 编程语言> > java-线性冲突违反了可接纳性,使我发疯

java-线性冲突违反了可接纳性,使我发疯

作者:互联网

如果两个块tj和tk处于线性冲突中(如果tj和tk在同一行中),则tj和tk的目标位置都在该行中,tj在tk的右侧,而tj的目标位置在左侧tk的目标位置.

线性冲突通过迫使它们彼此包围,从而使两个冲突的图块的“曼哈顿距离”至少增加了两个移动.因此,启发式函数将为每对冲突的磁贴增加2个移动的成本.

Linar冲突启发法是可以接受的,但是我使用的算法有时会违反可接纳性,这意味着它是悲观的,不一定会找到最佳位置.

这是代码:

private int linearVerticalConflict(State s) {
    int state[] = s.getState();
    int dimension = (int) Math.sqrt(state.length);
    int linearConflict = 0;
    int count = 0;
    for (int row = 0; row < dimension; row++) {
        int max = -1;
        for (int column = 0; column < dimension; column++) {
            int cellValue = state[count];
            count++;
            //int cellValue = newState[row][column];
            //is tile in its goal row ?
            if (cellValue != 0 && (cellValue - 1) / dimension == row) {
                if (cellValue > max) {
                    max = cellValue;
                } else {
                    //linear conflict, one tile must move up or down to
                    // allow the other to pass by and then back up
                    //add two moves to the manhattan distance
                    linearConflict += 2;
                }
            }

        }

    }
    return linearConflict;
}

private int linearHorizontalConflict(State s) {
    int[] state = s.getState();
    int dimension = (int) Math.sqrt(state.length);
    int linearConflict = 0;
    int count = 0;
    for (int column = 0; column < dimension; column++) {
        int max = -1;
        for (int row = 0; row < dimension; row++) {
            int cellValue = state[count];
            count++;
            //is tile in its goal row ?
            if (cellValue != 0 && cellValue % dimension == column + 1) {
                if (cellValue > max) {
                    max = cellValue;
                } else {
                    //linear conflict, one tile must move left or right to allow the other to pass by and then back up
                    //add two moves to the manhattan distance
                    linearConflict += 2;
                }
            }

        }

    }
    return linearConflict;
}

在以下情况下,该算法违反了可采性:
假设我们专注于具有配置的一行
[3,1,2]

假设[1,2,3]是目标配置.

该问题的曼哈顿距离之和为:4(3移动2次,1移动1次和2移动1次)
该行的线性冲突为:4(1和2都小于3所以2 2)

结果总启发式估计为8.
[3,1,2]可以用6个动作解决

解决方法:

线性冲突启发法比仅对每对冲突的瓦片加2更为复杂.

启发式描述于“Criticizing Solutions to Relaxed Models
Yields Powerful Admissible Heuristics” by OTHAR HANSSON and ANDREW MAYER and MOTI YUNG in INFORMATION SCIENCES 63, 207-227 (1992)

该算法在图5中进行了描述,其中涉及计算额外动作的最小数量以连续解决所有冲突.您已经发现,这不等于冲突对的数量的两倍.

实际呈现的算法是:

Begin {Algorithm LC} 
{ s is the current state}
{ L is the size of a line (row or column) in the puzzle. L = sqrt( N + 1 )
{ C(tj, ri) is the number of tiles in row ri with which tj is in conflict} 
{ C(tj, ci) similarly}
{ lc(s, rj) is the number of tiles that must be removed from row rj to resolve the linear conflicts}
{ lc(s, cj) similarly}
{ md(s, ti) is the Manhattan Distance of tile ti} 
{ MD(s) is the sum of the Manhattan Distances of all the tiles in s} 
{ LC(s) is the minimum number of additional moves needed to resolve the linear conflicts in s} 
For each row ri in the state s 
   lc(s, ri) = 0
   For each tile tj in ri 
      determine C(tj, ri) 
   While there is a non-zero C(tj, ri) value 
       Find tk such that there is no 
          C(tj, ri) > C(tk, ri) { As tk is the tile with the most conflicts, we choose to move it out of ri }
       C(tk, ri) = 0 
       For every tile tj which had been in conflict with tk 
          C(tj, ri) = C(tj, ri) - 1 
       lc(s, ri) = lc(s, ri) + 1 
{ Check similarly for linear conflicts in each column ci, computing lc(s, cj ). }
LC(s) = 2[lc(s, r1) + . .. + lc(s, rL) + lc(s,ci) + . . . + lc(s, cL)] 
For each tile tj in s 
    determine md(s, tj) 
MD(s) = ms(s, t1) + ... + md(s, tn)
h(s) = MD(s) + LC(s) 

该算法计算启发式成本h(s)

标签:heuristics,java,algorithm
来源: https://codeday.me/bug/20191111/2019427.html