python-更改pandas groupby使用的函数中的值
作者:互联网
我正在执行以下操作:
def percentage(x):
return x[(x<=5)].count() / x.count() * 100
full_data = full_data.groupby(['Id', 'Week_id'], as_index=False).agg({'Volume': percentage})
但是我想用百分比函数中的x <= 7,x <= 9,x <= 11等多个值连续进行分组. 代替编写多个函数并调用它们的最简单方法是什么? 所以基本上我想避免做这样的事情:
def percentage_1(x):
return x[(x<=5)].count() / x.count() * 100
full_data_1 = full_data.groupby(['Id', 'Week_id'], as_index=False).agg({'Volume': percentage_1})
def percentage_2(x):
return x[(x<=7)].count() / x.count() * 100
full_data_2 = full_data.groupby(['Id', 'Week_id'], as_index=False).agg({'Volume': percentage_2})
# etc.
解决方法:
您可以重写函数-创建由布尔掩码填充的新列,然后将平均值和最后的100乘以Series.mul
进行聚合:
n = 3
full_data['new'] = full_data['Volume'] <= n
full_data = full_data.groupby(['Id', 'Week_id'])['new'].mean().mul(100).reset_index()
功能解决方案:
def per(df, n):
df['new'] = df['Volume'] <= n
return df.groupby(['Id', 'Week_id'])['new'].mean().mul(100).reset_index()
编辑:从github开始的解决方案:
full_data = pd.DataFrame({
'Id':list('XXYYZZXYZX'),
'Volume':[2,4,8,1,2,5,8,2,6,4],
'Week_id':list('aaabbbabac')
})
print (full_data)
val = 5
def per(c):
def f1(x):
return x[(x<=c)].count() / x.count() * 100
return f1
full_data2 = full_data.groupby(['Id', 'Week_id']).agg({'Volume': per(val)}).reset_index()
print (full_data2)
Id Week_id Volume
0 X a 66.666667
1 X c 100.000000
2 Y a 0.000000
3 Y b 100.000000
4 Z a 0.000000
5 Z b 100.000000
def percentage(x):
return x[(x<=val)].count() / x.count() * 100
full_data1 = full_data.groupby(['Id', 'Week_id'], as_index=False).agg({'Volume': percentage})
print (full_data1)
Id Week_id Volume
0 X a 66.666667
1 X c 100.000000
2 Y a 0.000000
3 Y b 100.000000
4 Z a 0.000000
5 Z b 100.000000
标签:pandas-groupby,pandas,python 来源: https://codeday.me/bug/20191108/2006607.html