javascript-如何正确设置brain.js神经网络
作者:互联网
我正在使用从http://archive.ics.uci.edu/ml/datasets/Auto+MPG开始的自动MPG训练集
我的代码是:
'use strict';
var brain, fs, normalizeData, trainNetwork, _;
_ = require('lodash');
brain = require('brain');
fs = require('fs');
trainNetwork = function(trainNetworkCb) {
var net;
net = new brain.NeuralNetwork();
return fs.readFile('./data/autodata.csv', function(err, fileData) {
var fileString, lines, trainingData;
if (err) {
return trainNetworkCb(err);
}
fileString = fileData.toString();
lines = fileString.split('\n');
trainingData = lines.splice(0, lines.length / 2);
trainingData = _.map(trainingData, function(dataPoint) {
var normalizedData, obj;
normalizedData = normalizeData(dataPoint);
obj = {
input: normalizedData,
output: {
continuous: normalizedData.continuous
}
};
delete obj.input.continuous;
return obj;
});
net.train(trainingData, {
log: true,
logPeriod: 100,
errorThresh: 0.00005
});
return trainNetworkCb(null, net);
});
};
trainNetwork(function(err, net) {
if (err) {
throw err;
}
return fs.readFile('./data/autodata.csv', function(err, fileData) {
var fileString, lines, testData;
if (err) {
return trainNetworkCb(err);
}
fileString = fileData.toString();
lines = fileString.split('\n');
testData = lines.splice(lines.length / 2);
testData = _.filter(testData, function(point) {
return point !== '';
});
testData = _.map(testData, function(dataPoint) {
var normalizedData, obj;
normalizedData = normalizeData(dataPoint);
obj = {
output: {
continuous: normalizedData.continuous
},
input: normalizedData
};
delete obj.input.continuous;
return obj;
});
return _.each(testData, function(dataPoint) {
var output;
output = net.run(dataPoint.input);
console.log(output);
console.log(dataPoint);
return console.log('');
});
});
});
normalizeData = function(dataRow) {
var cylinders, dataSet, model_years, origins, row;
dataSet = dataRow.split(',');
dataSet = _.map(dataSet, function(point) {
return Number(point);
});
row = {};
cylinders = [5, 3, 6, 4, 8];
_.each(cylinders, function(cylinder) {
row["cylinder" + cylinder] = cylinder === dataSet[0] ? 1 : 0;
});
row.displacement = dataSet[1] / 500;
row.horsepower = dataSet[2] / 500;
row.weight = dataSet[3] / 10000;
row.acceleration = dataSet[4] / 100;
model_years = [82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70];
_.each(model_years, function(model_year) {
row["model_year" + model_year] = model_year === dataSet[5] ? 1 : 0;
});
origins = [2, 3, 1];
_.each(origins, function(origin) {
row["origin" + origin] = origin === dataSet[6] ? 1 : 0;
});
row.continuous = dataSet[7] / 100;
return row;
};
我相信我正在正确地规范一切.我将一半数据用于培训,另一半用于测试.据我所知,数据不是有序的,因此哪一半用于哪一部分都无关紧要.
测试时我的错误很大.通常减少10MPG左右(误差30%).我做错了什么?
谢谢
解决方法:
链接的数据集按型号年份排序;也许技术上的巨大变化使发动机更加高效?神经网络取决于训练过程中的正确输出.我将尝试使用除最后一行以外的所有内容来训练网络,然后使用该网络进行测试.您可以将正在使用的csv文件链接到我吗? normalizeData函数无法为您提供所需的链接文件(http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data)
编辑:
似乎无论您指定了什么错误,在训练运行中,大脑运行的迭代次数都不会超过20,000次.有几种方法可以解决此问题.您可以指定神经网络的learningRate.将learningRate设置为0.6(默认值为0.3)有助于我获得更准确的结果
net.train(trainingData, {
log: true,
logPeriod: 100,
errorThresh: 0.00005,
learningRate: 0.6
});
更高的learningRate意味着更积极的权重调整,这在您未运行所需的迭代次数时会有所帮助.
或者,您可以在options对象中指定迭代的总数(如果未指定,则默认为20,000-请参见here).
net.train(trainingData, {
log: true,
logPeriod: 100,
errorThresh: 0.00005,
iterations: 100000
});
当我<迭代&&错误> errorThresh计算为false.因此,请随意提高迭代次数,以确保上面的表达式变为false,因为错误低于您指定的errorTresh(source).
标签:neural-network,javascript,brain-js 来源: https://codeday.me/bug/20191028/1955712.html