编程语言
首页 > 编程语言> > python-如何访问Scikit学习嵌套的交叉验证得分

python-如何访问Scikit学习嵌套的交叉验证得分

作者:互联网

我正在使用python,并且希望将嵌套交叉验证与scikit学习一起使用.我发现一个非常好的example

NUM_TRIALS = 30
non_nested_scores = np.zeros(NUM_TRIALS)
nested_scores = np.zeros(NUM_TRIALS)
# Choose cross-validation techniques for the inner and outer loops,
# independently of the dataset.
# E.g "LabelKFold", "LeaveOneOut", "LeaveOneLabelOut", etc.
inner_cv = KFold(n_splits=4, shuffle=True, random_state=i)
outer_cv = KFold(n_splits=4, shuffle=True, random_state=i)

# Non_nested parameter search and scoring
clf = GridSearchCV(estimator=svr, param_grid=p_grid, cv=inner_cv)
clf.fit(X_iris, y_iris)
non_nested_scores[i] = clf.best_score_

# Nested CV with parameter optimization
nested_score = cross_val_score(clf, X=X_iris, y=y_iris, cv=outer_cv)
nested_scores[i] = nested_score.mean()

如何访问嵌套交叉验证中的最佳参数集以及所有参数集(及其对应的分数)?

解决方法:

您无法从cross_val_score访问单个参数和最佳参数. cross_val_score在内部执行的操作是克隆提供的估算器,然后在给定的估算器上使用给定的X,y对其调用fit和score方法.

如果要在每个拆分中访问参数,则可以使用:

#put below code inside your NUM_TRIALS for loop
cv_iter = 0
temp_nested_scores_train = np.zeros(4)
temp_nested_scores_test = np.zeros(4)
for train, test in outer_cv.split(X_iris):
    clf.fit(X_iris[train], y_iris[train])
    temp_nested_scores_train[cv_iter] = clf.best_score_
    temp_nested_scores_test[cv_iter] = clf.score(X_iris[test], y_iris[test])
    #You can access grid search's params here
nested_scores_train[i] = temp_nested_scores_train.mean()
nested_scores_test[i] = temp_nested_scores_test.mean()

标签:cross-validation,grid-search,scikit-learn,machine-learning,python
来源: https://codeday.me/bug/20191026/1935487.html