车牌字符分割python opencv
作者:互联网
并且应该在每个字符周围创建一个矩形边框.我的代码正在创建一个圆形边界框.我需要将这些孤立的角色图像提供给我训练有素的模型以预测角色.我没有做过图像处理,这导致我提出这样的问题.
这是我正在使用的代码:
# Standard imports
import cv2
import numpy as np;
from PIL import Image
params = cv2.SimpleBlobDetector_Params()
# Change thresholds
params.minThreshold = 10;
params.maxThreshold = 200;
#Filter by Color
params.filterByColor=False
params.blobColor=255
# Filter by Area.
params.filterByArea = False
params.minArea = 50
# Filter by Circularity
params.filterByCircularity = False
params.minCircularity = 0.0785
#
# # Filter by Convexity
params.filterByConvexity = False
params.minConvexity = 0.87
#
# # Filter by Inertia
params.filterByInertia = False
params.minInertiaRatio = 0.01
# Read image
im = cv2.imread("C:\\xx\\testimages\\bw_plate.jpg", cv2.IMREAD_GRAYSCALE)
cv2.threshold(im,200,255,cv2.THRESH_BINARY_INV,im)
# Set up the detector with default parameters.
detector = cv2.SimpleBlobDetector_create(params)
# Detect blobs.
keypoints = detector.detect(im)
# Draw detected blobs as red circles.
# cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures the size of the circle corresponds to the size of blob
im_with_keypoints = cv2.drawKeypoints(im, keypoints, np.array([]), (0, 0, 255),
cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
# Show keypoints
cv2.imshow("Keypoints", im_with_keypoints)
cv2.waitKey(0)
为什么不能正确检测0和2?另外,如何为每个孤立的字符创建单独的jpeg文件?
我的项目的C实现使用CblobResult类进行细分. python中有任何等效的库吗?
解决方法:
消除背景噪音后,您可以像这样输入图像:
然后,您可以使用以下代码获得所需的内容:
import cv2
img = cv2.imread('test4.jpg', 0)
cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU,img)
image, contours, hier = cv2.findContours(img, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
contours = sorted(contours, key=lambda ctr: cv2.boundingRect(ctr)[0])
cv2.imshow("contours", img)
cv2.waitKey(0)
d=0
for ctr in contours:
# Get bounding box
x, y, w, h = cv2.boundingRect(ctr)
# Getting ROI
roi = image[y:y+h, x:x+w]
cv2.imshow('character: %d'%d,roi)
cv2.imwrite('character_%d.png'%d, roi)
cv2.waitKey(0)
cv2.destroyAllWindows()
d+=1
标签:image-segmentation,python,opencv,image-processing,ocr 来源: https://codeday.me/bug/20191012/1898819.html