python-根据相似性对图像进行分类
作者:互联网
我有30,40张人类图片,我想用Python代码得到.并制作一组类似的照片.像约翰的5张照片和彼得的10张照片.像这样 .我是图像处理方面的新手.所以我的问题是哪种算法最适合这个.我想在AWS lambda函数上执行此操作.任何帮助将不胜感激.
P.S(这是我在该领域的第一个任务.请忽略告诉我改善它们的错误,谢谢)
解决方法:
我建议您使用AWS Rekognition进行操作.很简单
您可以通过3个简单的步骤来实现所需的目标:
1.上载带有元数据的图像:表示您要将具有其姓名的人的图像上载到s3,以存储其信息以供以后参考
2.为照片建立索引:这意味着向面部添加信息标签,该信息存储在dynamodb中,并通过index_faces api完成
3.比较带有索引面孔的照片:这将通过rekognition search_faces_by_image api实现
现在第1部分代码:使用元数据批量上传
import boto3
s3 = boto3.resource('s3')
# Get list of objects for indexing
images=[('image01.jpeg','Albert Einstein'),
('image02.jpeg','Candy'),
('image03.jpeg','Armstrong'),
('image04.jpeg','Ram'),
('image05.jpeg','Peter'),
('image06.jpeg','Shashank')
]
# Iterate through list to upload objects to S3
for image in images:
file = open(image[0],'rb')
object = s3.Object('rekognition-pictures','index/'+ image[0])
ret = object.put(Body=file,
Metadata={'FullName':image[1]}
)
现在第2部分代码:索引编制
from __future__ import print_function
import boto3
from decimal import Decimal
import json
import urllib
print('Loading function')
dynamodb = boto3.client('dynamodb')
s3 = boto3.client('s3')
rekognition = boto3.client('rekognition')
# --------------- Helper Functions ------------------
def index_faces(bucket, key):
response = rekognition.index_faces(
Image={"S3Object":
{"Bucket": bucket,
"Name": key}},
CollectionId="family_collection")
return response
def update_index(tableName,faceId, fullName):
response = dynamodb.put_item(
TableName=tableName,
Item={
'RekognitionId': {'S': faceId},
'FullName': {'S': fullName}
}
)
# --------------- Main handler ------------------
def lambda_handler(event, context):
# Get the object from the event
bucket = event['Records'][0]['s3']['bucket']['name']
key = urllib.unquote_plus(
event['Records'][0]['s3']['object']['key'].encode('utf8'))
try:
# Calls Amazon Rekognition IndexFaces API to detect faces in S3 object
# to index faces into specified collection
response = index_faces(bucket, key)
# Commit faceId and full name object metadata to DynamoDB
if response['ResponseMetadata']['HTTPStatusCode'] == 200:
faceId = response['FaceRecords'][0]['Face']['FaceId']
ret = s3.head_object(Bucket=bucket,Key=key)
personFullName = ret['Metadata']['fullname']
update_index('family_collection',faceId,personFullName)
# Print response to console
print(response)
return response
except Exception as e:
print(e)
print("Error processing object {} from bucket {}. ".format(key, bucket))
raise e
现在第3部分代码:比较
import boto3
import io
from PIL import Image
rekognition = boto3.client('rekognition', region_name='eu-west-1')
dynamodb = boto3.client('dynamodb', region_name='eu-west-1')
image = Image.open("group1.jpeg")
stream = io.BytesIO()
image.save(stream,format="JPEG")
image_binary = stream.getvalue()
response = rekognition.search_faces_by_image(
CollectionId='family_collection',
Image={'Bytes':image_binary}
)
for match in response['FaceMatches']:
print (match['Face']['FaceId'],match['Face']['Confidence'])
face = dynamodb.get_item(
TableName='family_collection',
Key={'RekognitionId': {'S': match['Face']['FaceId']}}
)
if 'Item' in face:
print (face['Item']['FullName']['S'])
else:
print ('no match found in person lookup')
使用上面的比较功能,您将获得照片中人脸的名称,然后您可以决定下一步要做什么,例如通过重命名照片将具有相同名称的照片存储到其他文件夹中,这将为不同文件夹中的不同人提供照片
先决条件:
创建一个名为family_collection的识别集合
aws rekognition create-collection --collection-id family_collection --region eu-west-1
创建一个名为family_collection的动态表
aws dynamodb create-table --table-name family_collection \
--attribute-definitions AttributeName=RekognitionId,AttributeType=S \
--key-schema AttributeName=RekognitionId,KeyType=HASH \
--provisioned-throughput ReadCapacityUnits=1,WriteCapacityUnits=1 \
--region eu-west-1
标签:python,amazon-web-services,classification,aws-lambda,image-processing 来源: https://codeday.me/bug/20191010/1883199.html