Python中List的最小值和最大值(不使用min / max函数)
作者:互联网
我想知道是否有办法找到min&不使用Python中的min / max函数的最大列表.所以我用递归写了一个小代码.我的逻辑很天真:我做了两个堆栈(min_stack和max_stack),它们在每次递归调用期间跟踪最小值和最大值.我有两个问题:
>有人可以帮我估算代码的复杂性吗?
>有更好的方法吗?是使用mergesort / quicksort对列表进行排序,并选择第一个和最后一个元素可以提供更好的性能吗?
谢谢
这是我在Python中的尝试:
minimum = []
maximum = []
# Defining Stack Class
class Stack:
def __init__(self) :
self.items = []
def push(self, item) :
self.items.append(item)
def pop(self) :
return self.items.pop()
def access(self, index):
return self.items[index]
def isEmpty(self) :
return (self.items == [])
def length(self):
return len(self.items)
def minmax(input_list):
# make two stacks, one for min and one for max
min_stack = Stack()
max_stack = Stack()
# comparing the first two elements of the list and putting them in appropriate stack
if input_list[0]<input_list[1]:
min_stack.push(input_list[0])
max_stack.push(input_list[1])
else:
max_stack.push(input_list[0])
min_stack.push(input_list[1])
# Pushing remaining elements of the list into appropriate stacks.
for i in range(2, len(input_list)):
if input_list[i] < min_stack.access(-1):
min_stack.push(input_list[i])
else:
max_stack.push(input_list[i])
# to find minimum
minlist = []
while min_stack.length() > 0:
minlist.append(min_stack.pop())
# to find maximum
maxlist = []
while max_stack.length() > 0:
maxlist.append(max_stack.pop())
if len(minlist) > 1:
minmax(minlist)
else:
minimum.append(minlist)
if len(maxlist) > 1:
minmax(maxlist)
else:
maximum.append(maxlist)
def main():
input_list = [2, 0, 2, 7, 5, -1, -2]
print 'Input List is: ', input_list
minmax(input_list)
print 'Global Minimum is: ', minimum[0]
print 'Global Maximum is: ', maximum[len(maximum)-1]
if __name__ == "__main__":
main()
解决方法:
当然,使用sorted()对于中等大小的列表来说是可靠,快速编写和高性能的,因为它是内置的.对于大型列表,O(n)算法会更快,例如:
def minmax1 (x):
# this function fails if the list length is 0
minimum = maximum = x[0]
for i in x[1:]:
if i < minimum:
minimum = i
else:
if i > maximum: maximum = i
return (minimum,maximum)
print(minmax1([9,8,7,6,5,4,3,2,1,11,12,13,14,15,16,17,18,19]))
print(minmax1([1]))
print(minmax1([2, 0, 2, 7, 5, -1, -2]))
…输出为:
(1, 19)
(1, 1)
(-2, 7)
我有兴趣检查两种替代方案的性能.在运行Windows XP和Python 3.2.3的PC上,我发现排序方法比上面定义的minmax1()函数更快,对于少于500个元素的列表,但是对于更长的列表,O(n)minmax1()是快点.我的计时测试代码如下:
def minmax_sort(x):
x = sorted(x)
return (x[0],x[-1])
import timeit
aa = list(range(0,100))
a = aa
while (1):
stime = min(timeit.repeat('minmax_sort(a)', "from __main__ import minmax_sort,a",number=1000))
mtime = min(timeit.repeat('minmax1(a)', "from __main__ import minmax,a",number=1000))
if (stime > mtime):
break
else:
a = a + aa
print(len(a))
标签:python,algorithm,minmax 来源: https://codeday.me/bug/20191007/1868101.html