python – 将DataFrame列标题设置为MultiIndex
作者:互联网
如何将具有单级列的现有数据框转换为具有分层索引列(MultiIndex)?
示例数据帧:
In [1]:
import pandas as pd
from pandas import Series, DataFrame
df = DataFrame(np.arange(6).reshape((2,3)),
index=['A','B'],
columns=['one','two','three'])
df
Out [1]:
one two three
A 0 1 2
B 3 4 5
我以为reindex()会起作用,但我得到了NaN:
In [2]:
df.reindex(columns=[['odd','even','odd'],df.columns])
Out [2]:
odd even odd
one two three
A NaN NaN NaN
B NaN NaN NaN
如果我使用DataFrame(),则相同:
In [3]:
DataFrame(df,columns=[['odd','even','odd'],df.columns])
Out [3]:
odd even odd
one two three
A NaN NaN NaN
B NaN NaN NaN
如果我指定df.values,这最后一种方法确实有效:
In [4]:
DataFrame(df.values,index=df.index,columns=[['odd','even','odd'],df.columns])
Out [4]:
odd even odd
one two three
A 0 1 2
B 3 4 5
这样做的正确方法是什么?为什么reindex()给NaN?
解决方法:
你很接近,只是将列直接设置为一个新的(大小相同)索引(如果它的列表列表将转换为多索引)
In [8]: df
Out[8]:
one two three
A 0 1 2
B 3 4 5
In [10]: df.columns = [['odd','even','odd'],df.columns]
In [11]: df
Out[11]:
odd even odd
one two three
A 0 1 2
B 3 4 5
Reindex将重新排序/过滤现有索引.你得到所有nans的原因是你说,他们找到与这个新索引相匹配的现有列;没有比赛,这就是你得到的
标签:multi-index,python,pandas 来源: https://codeday.me/bug/20191006/1861141.html