编程语言
首页 > 编程语言> > Python自然平滑样条

Python自然平滑样条

作者:互联网

我试图找到一个python包,它将提供一个选项,以适应自然平滑样条曲线和用户可选择的平滑因子.有没有实现?如果没有,您将如何使用可用的实现方法?

>通过自然样条我的意思是应该存在一个条件,即端点处拟合函数的二阶导数为零(线性).
>通过平滑样条曲线,我的意思是样条曲线不应该是“插值”(通过所有数据点).我想自己决定正确的平滑因子lambda(参见Wikipedia page用于平滑样条).

我发现了什么

> scipy.interpolate.CubicSpline [link]:自然(立方)样条拟合.插值,并没有办法平滑数据.
> scipy.interpolate.UnivariateSpline [link]:样条拟合与用户可选择的平滑因子.但是,没有选项可以使样条曲线自然.

解决方法:

经过几个小时的调查,我没有发现任何可以安装的pip包,它可以装配一个具有用户可控平滑度的自然三次样条.但是,在决定自己写一个之后,在阅读有关这个​​主题的时候,我偶然发现了一个blog post由github用户madrury.他编写了能够生成自然三次样条模型的python代码.

型号代码可用here(NaturalCubicSpline)和a BSD-licence.他还在IPython notebook中写了一些例子.

但由于这是互联网而且链接往往会死掉,我将在这里复制源代码的相关部分,由我编写一个帮助函数(get_natural_cubic_spline_model),并展示如何使用它的示例.可以通过使用不同数量的节来控制配合的平滑度.结的位置也可以由用户指定.

from matplotlib import pyplot as plt
import numpy as np

def func(x):
    return 1/(1+25*x**2)

# make example data
x = np.linspace(-1,1,300)
y = func(x) + np.random.normal(0, 0.2, len(x))

# The number of knots can be used to control the amount of smoothness
model_6 = get_natural_cubic_spline_model(x, y, minval=min(x), maxval=max(x), n_knots=6)
model_15 = get_natural_cubic_spline_model(x, y, minval=min(x), maxval=max(x), n_knots=15)
y_est_6 = model_6.predict(x)
y_est_15 = model_15.predict(x)


plt.plot(x, y, ls='', marker='.', label='originals')
plt.plot(x, y_est_6, marker='.', label='n_knots = 6')
plt.plot(x, y_est_15, marker='.', label='n_knots = 15')
plt.legend(); plt.show()

Example of natural cubic splines with varying smoothness.

get_natural_cubic_spline_model的源代码

import numpy as np
import pandas as pd
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline


def get_natural_cubic_spline_model(x, y, minval=None, maxval=None, n_knots=None, knots=None):
    """
    Get a natural cubic spline model for the data.

    For the knots, give (a) `knots` (as an array) or (b) minval, maxval and n_knots.

    If the knots are not directly specified, the resulting knots are equally
    space within the *interior* of (max, min).  That is, the endpoints are
    *not* included as knots.

    Parameters
    ----------
    x: np.array of float
        The input data
    y: np.array of float
        The outpur data
    minval: float 
        Minimum of interval containing the knots.
    maxval: float 
        Maximum of the interval containing the knots.
    n_knots: positive integer 
        The number of knots to create.
    knots: array or list of floats 
        The knots.

    Returns
    --------
    model: a model object
        The returned model will have following method:
        - predict(x):
            x is a numpy array. This will return the predicted y-values.
    """

    if knots:
        spline = NaturalCubicSpline(knots=knots)
    else:
        spline = NaturalCubicSpline(max=maxval, min=minval, n_knots=n_knots)

    p = Pipeline([
        ('nat_cubic', spline),
        ('regression', LinearRegression(fit_intercept=True))
    ])

    p.fit(x, y)

    return p


class AbstractSpline(BaseEstimator, TransformerMixin):
    """Base class for all spline basis expansions."""

    def __init__(self, max=None, min=None, n_knots=None, n_params=None, knots=None):
        if knots is None:
            if not n_knots:
                n_knots = self._compute_n_knots(n_params)
            knots = np.linspace(min, max, num=(n_knots + 2))[1:-1]
            max, min = np.max(knots), np.min(knots)
        self.knots = np.asarray(knots)

    @property
    def n_knots(self):
        return len(self.knots)

    def fit(self, *args, **kwargs):
        return self


class NaturalCubicSpline(AbstractSpline):
    """Apply a natural cubic basis expansion to an array.
    The features created with this basis expansion can be used to fit a
    piecewise cubic function under the constraint that the fitted curve is
    linear *outside* the range of the knots..  The fitted curve is continuously
    differentiable to the second order at all of the knots.
    This transformer can be created in two ways:
      - By specifying the maximum, minimum, and number of knots.
      - By specifying the cutpoints directly.  

    If the knots are not directly specified, the resulting knots are equally
    space within the *interior* of (max, min).  That is, the endpoints are
    *not* included as knots.
    Parameters
    ----------
    min: float 
        Minimum of interval containing the knots.
    max: float 
        Maximum of the interval containing the knots.
    n_knots: positive integer 
        The number of knots to create.
    knots: array or list of floats 
        The knots.
    """

    def _compute_n_knots(self, n_params):
        return n_params

    @property
    def n_params(self):
        return self.n_knots - 1

    def transform(self, X, **transform_params):
        X_spl = self._transform_array(X)
        if isinstance(X, pd.Series):
            col_names = self._make_names(X)
            X_spl = pd.DataFrame(X_spl, columns=col_names, index=X.index)
        return X_spl

    def _make_names(self, X):
        first_name = "{}_spline_linear".format(X.name)
        rest_names = ["{}_spline_{}".format(X.name, idx)
                      for idx in range(self.n_knots - 2)]
        return [first_name] + rest_names

    def _transform_array(self, X, **transform_params):
        X = X.squeeze()
        try:
            X_spl = np.zeros((X.shape[0], self.n_knots - 1))
        except IndexError: # For arrays with only one element
            X_spl = np.zeros((1, self.n_knots - 1))
        X_spl[:, 0] = X.squeeze()

        def d(knot_idx, x):
            def ppart(t): return np.maximum(0, t)

            def cube(t): return t*t*t
            numerator = (cube(ppart(x - self.knots[knot_idx]))
                         - cube(ppart(x - self.knots[self.n_knots - 1])))
            denominator = self.knots[self.n_knots - 1] - self.knots[knot_idx]
            return numerator / denominator

        for i in range(0, self.n_knots - 2):
            X_spl[:, i+1] = (d(i, X) - d(self.n_knots - 2, X)).squeeze()
        return X_spl

标签:spline,python,regression
来源: https://codeday.me/bug/20191006/1858025.html