python – 如何绘制混淆矩阵?
作者:互联网
参见英文答案 > How to plot confusion matrix with string axis rather than integer in python 4个
我正在使用scikit-learn将文本文档(22000)分类为100个类.我使用scikit-learn的混淆矩阵方法来计算混淆矩阵.
model1 = LogisticRegression()
model1 = model1.fit(matrix, labels)
pred = model1.predict(test_matrix)
cm=metrics.confusion_matrix(test_labels,pred)
print(cm)
plt.imshow(cm, cmap='binary')
这就是我的混淆矩阵的样子:
[[3962 325 0 ..., 0 0 0]
[ 250 2765 0 ..., 0 0 0]
[ 2 8 17 ..., 0 0 0]
...,
[ 1 6 0 ..., 5 0 0]
[ 1 1 0 ..., 0 0 0]
[ 9 0 0 ..., 0 0 9]]
但是,我没有收到明确或清晰的情节.有一个更好的方法吗?
解决方法:
您可以使用plt.matshow()而不是plt.imshow(),或者您可以使用seaborn模块的热图(see documentation)来绘制混淆矩阵
import seaborn as sn
import pandas as pd
import matplotlib.pyplot as plt
array = [[33,2,0,0,0,0,0,0,0,1,3],
[3,31,0,0,0,0,0,0,0,0,0],
[0,4,41,0,0,0,0,0,0,0,1],
[0,1,0,30,0,6,0,0,0,0,1],
[0,0,0,0,38,10,0,0,0,0,0],
[0,0,0,3,1,39,0,0,0,0,4],
[0,2,2,0,4,1,31,0,0,0,2],
[0,1,0,0,0,0,0,36,0,2,0],
[0,0,0,0,0,0,1,5,37,5,1],
[3,0,0,0,0,0,0,0,0,39,0],
[0,0,0,0,0,0,0,0,0,0,38]]
df_cm = pd.DataFrame(array, index = [i for i in "ABCDEFGHIJK"],
columns = [i for i in "ABCDEFGHIJK"])
plt.figure(figsize = (10,7))
sn.heatmap(df_cm, annot=True)
标签:text-classification,python,scikit-learn,matrix,matplotlib 来源: https://codeday.me/bug/20191003/1850561.html