编程语言
首页 > 编程语言> > python – Spark MLib决策树:功能标签的概率?

python – Spark MLib决策树:功能标签的概率?

作者:互联网

我可以设法显示我的标签的总概率,例如在显示我的决策树之后,我有一个表:

Total Predictions :
    65% impressions
    30% clicks
    5%  conversions

但我的问题是通过功能(按节点)查找概率(或计数),例如:

if feature1 > 5
   if feature2 < 10
      Predict Impressions
      samples : 30 Impressions
   else feature2 >= 10
      Predict Clicks
      samples : 5 Clicks

Scikit自动完成,我试图找到一种方法来使用Spark

解决方法:

注意:以下解决方案仅适用于Scala.我没有找到在Python中做到这一点的方法.

假设你只想要一个树的可视化表示,如你的例子,也许一个选项是调整Spark的GitHub上的Node.scala代码中存在的方法subtreeToString,以包括每个节点拆分的概率,如下面的代码片段所示:

def subtreeToString(rootNode: Node, indentFactor: Int = 0): String = {
  def splitToString(split: Split, left: Boolean): String = {
    split.featureType match {
      case Continuous => if (left) {
        s"(feature ${split.feature} <= ${split.threshold})"
      } else {
        s"(feature ${split.feature} > ${split.threshold})"
      }
      case Categorical => if (left) {
        s"(feature ${split.feature} in ${split.categories.mkString("{", ",", "}")})"
      } else {
        s"(feature ${split.feature} not in ${split.categories.mkString("{", ",", "}")})"
      }
    }
  }
  val prefix: String = " " * indentFactor
  if (rootNode.isLeaf) {
    prefix + s"Predict: ${rootNode.predict.predict} \n"
  } else {
    val prob = rootNode.predict.prob*100D
    prefix + s"If ${splitToString(rootNode.split.get, left = true)} " + f"(Prob: $prob%04.2f %%)" + "\n" +
      subtreeToString(rootNode.leftNode.get, indentFactor + 1) +
      prefix + s"Else ${splitToString(rootNode.split.get, left = false)} " + f"(Prob: ${100-prob}%04.2f %%)" + "\n" +
      subtreeToString(rootNode.rightNode.get, indentFactor + 1)
  }
}

我已经在Iris dataset上运行的模型上测试了它,我得到了以下结果:

scala> println(subtreeToString(model.topNode))

If (feature 2 <= -0.762712) (Prob: 35.35 %)
 Predict: 1.0
Else (feature 2 > -0.762712) (Prob: 64.65 %)
 If (feature 3 <= 0.333333) (Prob: 52.24 %)
  If (feature 0 <= -0.666667) (Prob: 92.11 %)
   Predict: 3.0
  Else (feature 0 > -0.666667) (Prob: 7.89 %)
   If (feature 2 <= 0.322034) (Prob: 94.59 %)
    Predict: 2.0
   Else (feature 2 > 0.322034) (Prob: 5.41 %)
    If (feature 3 <= 0.166667) (Prob: 50.00 %)
     Predict: 3.0
    Else (feature 3 > 0.166667) (Prob: 50.00 %)
     Predict: 2.0
 Else (feature 3 > 0.333333) (Prob: 47.76 %)
  Predict: 3.0

可以使用类似的方法来创建具有该信息的树结构.主要区别在于将打印信息(split.feature,split.threshold,predict.prob等)存储为val并使用它们来构建结构.

标签:decision-tree,python,apache-spark,data-science
来源: https://codeday.me/bug/20191002/1841750.html