python – 使用curve_fit来拟合数据
作者:互联网
我是scipy和matplotlib的新手,我一直在尝试将函数与数据相匹配. Scipy Cookbook中的第一个例子非常有效,但是当我尝试从文件中读取点时,我给出的初始系数(下面的p0)似乎从未真正改变,协方差矩阵总是INF.
我试图在一条线后拟合数据,但无济于事.我导入数据的方式有问题吗?如果是这样,有没有更好的方法呢?
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
import scipy as sy
with open('data.dat') as f:
noms = f.readline().split('\t')
dtipus = [('x', sy.float32)] + [('y', sy.float32)]
data = sy.loadtxt(f,delimiter='\t',dtype=dtipus)
x = data['x']
y = data['y']
def func(x, a, b, c):
return a*x**b + c
p0 = sy.array([1,1,1])
coeffs, matcov = curve_fit(func, x, y, p0)
yaj = func(x, coeffs[0], coeffs[1], coeffs[2])
print(coeffs)
print(matcov)
plt.plot(x,y,'x',x,yaj,'r-')
plt.show()
谢谢!
解决方法:
在我看来,问题确实在于如何导入数据.伪造这个数据文件:
$:~/temp$cat data.dat
1.0 2.0
2.0 4.2
3.0 8.4
4.0 16.1
并使用pylab的loadtxt函数进行读取:
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
import scipy as sy
import pylab as plb
data = plb.loadtxt('data.dat')
x = data[:,0]
y= data[:,1]
def func(x, a, b, c):
return a*x**b + c
p0 = sy.array([1,1,1])
coeffs, matcov = curve_fit(func, x, y, p0)
yaj = func(x, coeffs[0], coeffs[1], coeffs[2])
print(coeffs)
print(matcov)
plt.plot(x,y,'x',x,yaj,'r-')
plt.show()
适合我.顺便说一句,您可以使用dtypes来命名列.
标签:least-squares,python,scipy,python-3-x,curve-fitting 来源: https://codeday.me/bug/20190929/1830715.html