编程语言
首页 > 编程语言> > python – 使用Numpy手动反转FFT

python – 使用Numpy手动反转FFT

作者:互联网

我有一个用于计算方波的傅立叶变换的小脚本,当我使用numpy.fft.ifft()反转fft时,该脚本运行良好并正确返回方波.但是,我无法通过在将它们乘以我从numpy.fft.fft获得的各自系数后手动累加谐波来反转变换()下面是我的脚本,我相信你会看到我的意图.

from numpy import zeros, concatenate, sin, pi, linspace
from numpy.fft import fft, fftfreq, ifft
import numpy as np
import matplotlib.pyplot as plt

N = 1024 # samples
T = 1 # period
dt = T/N # sampling period
fs = 1/dt # sampling frequency
t = linspace(0, T, N) # time points
functime = .... # square wave

funcfft = fft(functime) # fft
fftcoeffs = np.abs(funcfft)/N # coefficients, divide by N to get actual coeff.s(I believe?)
freqs = fftfreq(N, dt) # frequencies

plt.plot(freqs, fftcoeffs) # gives me reasonable output
plt.show()

FF = ifft(funcfft)
plt.plot(t, FF) # plots exactly the same function as functime defined above
plt.show()

到目前为止一切都很好.现在我的问题是,如果我在上面的脚本之后运行下面的脚本,我不应该收敛到原始函数吗?:

FFF = zeros(N)
for i in range(300):
    FFF += fftcoeffs[i]*sin(2*pi*freqs[i]*t)
plt.plot(t, FFF)
plt.show()

假设范围(300)足以收敛.现在,当我这样做时,FFF与我原来的功能不同.我认为,如果我将相应频率的谐波乘以它们相应的系数,我认为这些系数存储在fftcoeffs中,那么我将收敛到原始函数.我究竟做错了什么?

更新:根据DanielSank的建议,我已更新了我的for循环,如下所示,遗憾的是没有给我预期的结果:

freqs2 = np.abs(freqs)
freqs2 = np.sort(freqs2)
for k in range(300):
    FFF += fftcoeffs[k]*exp(2j*pi*freqs2[k]*t/N)

我不确定我是否在这里做“按绝对值排序fftfreq”部分.

解决方法:

术语

此问题中没有任何内容特定于fast Fourier transform (FFT).
FFT是用于计算discrete Fourier transform (DFT)的特定算法,因此我将说“DFT”而不是“FFT”.

在该答案中,m表示离散时间索引,k表示离散频率索引.

什么是DFT?

这里有几个问题,所有这些都是数学上的,这些问题来自对DFT如何工作的误解.
取自numpy.fft模块docstring,numpy将离散傅里叶变换定义为

A_k = \sum_{m=0}^{n-1} a_m \exp[-2 \pi i (m k / n)]

这是LaTeX表示离散傅里叶变换是复指数exp [2 pi i m k / n]的线性组合,其中n是点的总数,m是离散时间指数.
在你的表示法中,这将是exp [2 pi i m k / N],因为你使用N来表示总点数.

使用exp,而不是正弦

请注意,DFT使用指数;这些都不是正弦函数.
如果要根据离散傅立叶变换系数建立时域信号,则必须使用与DFT本身相同的函数!
因此,你可以试试这个:

FFF = zeros(N)
for i in range(300):
    FFF += fftcoeffs[i]*np.exp(2*pi*i*freqs[i]*t)
plt.plot(t, FFF)
plt.show()

但是,这也会以一种可能让你感到困惑的方式失败.

别名

最后的拼图与称为锯齿的效果有关.
假设您采用信号exp [2 pi i(N p)m / N]的DFT.
如果你计算它,你会发现除了A_p之外所有的A_k都是零.
事实上,如果你采用exp [2 pi i p m / N]的DFT,你会得到同样的东西.
你可以看到频率大于N的任何复指数都表现为低频率.
特别地,任何具有频率q b N的复指数,其中b是任何整数,看起来它具有频率q.

现在假设我们有一个时域信号cos(2 pi p m / N).
那等于

(1/2)[(exp(2 pi i p m / N)exp(-2 pi i p m / N)].

负频率对DFT产生了有趣的影响.
频率-p可写为(N-p)N.
其形式为q b N,其中q = N-p且b = 1.
所以,负频率-p看起来像N-p!

numpy函数fftfreq知道这一点.
看看fftfreq的输出,你会看到它从零开始,运行到采样频率的一半(称为奈奎斯特频率),然后变为负数!
这是为了帮助您处理我们刚才描述的锯齿效果.

所有这一切的结果是,如果你想通过求和最低频率傅立叶分量来近似函数,你不想从fftfreq中取出最低的几个元素.
相反,您希望按绝对值对fftfreq进行排序,然后将复数指数与这些频率相加.

另请查看np.fft.hfft.
此函数旨在处理实值函数以及与它们相关的别名问题.

由于这是一个相当难以口头讨论的问题,这里有一个完全符合你想要的脚本.
请注意,我在注释描述的代码块之后添加注释.
确保安装了matplotlib(在您的虚拟环境中……您使用虚拟环境,对吧?).
如果您有疑问,请发表评论.

from __future__ import division
import numpy as np
import matplotlib.pyplot as plt


pi = np.pi


def square_function(N, square_width):
    """Generate a square signal.

    Args:
        N (int): Total number of points in the signal.
        square_width (int): Number of "high" points.

    Returns (ndarray):
        A square signal which looks like this:

              |____________________
              |<-- square_width -->
              |                    ______________
              |
              |^                   ^            ^
        index |0             square_width      N-1

        In other words, the output has [0:N]=1 and [N:]=0.
    """
    signal = np.zeros(N)
    signal[0:square_width] = 1
    return signal


def check_num_coefficients_ok(N, num_coefficients):
    """Make sure we're not trying to add more coefficients than we have."""
    limit = None
    if N % 2 == 0 and num_coefficients > N // 2:
        limit = N/2
    elif N % 2 == 1 and num_coefficients > (N - 1)/2:
        limit = (N - 1)/2
    if limit is not None:
        raise ValueError(
            "num_coefficients is {} but should not be larger than {}".format(
                num_coefficients, limit))


def test(N, square_width, num_coefficients):
    """Test partial (i.e. filtered) Fourier reconstruction of a square signal.

    Args:
        N (int): Number of time (and frequency) points. We support both even
            and odd N.
        square_width (int): Number of "high" points in the time domain signal.
            This number must be less than or equal to N.
        num_coefficients (int): Number of frequencies, in addition to the dc
            term, to use in Fourier reconstruction. This is the number of
            positive frequencies _and_ the number of negative frequencies.
            Therefore, if N is odd, this number cannot be larger than
            (N - 1)/2, and if N is even this number cannot be larger than
            N/2.
    """
    if square_width > N:
        raise ValueError("square_width cannot be larger than N")
    check_num_coefficients_ok(N, num_coefficients)

    time_axis = np.linspace(0, N-1, N)

    signal = square_function(N, square_width)
    ft = np.fft.fft(signal)

    reconstructed_signal = np.zeros(N)
    reconstructed_signal += ft[0] * np.ones(N)
    # Adding the dc term explicitly makes the looping easier in the next step.

    for k in range(num_coefficients):
        k += 1  # Bump by one since we already took care of the dc term.
        if k == N-k:
            reconstructed_signal += ft[k] * np.exp(
                1.0j*2 * pi * (k) * time_axis / N)
        # This catches the case where N is even and ensures we don't double-
        # count the frequency k=N/2.

        else:
            reconstructed_signal += ft[k] * np.exp(
                1.0j*2 * pi * (k) * time_axis / N)
            reconstructed_signal += ft[N-k] * np.exp(
                1.0j*2 * pi * (N-k) * time_axis / N)
        # In this case we're just adding a frequency component and it's
        # "partner" at minus the frequency

    reconstructed_signal = reconstructed_signal / N
    # Normalize by the number of points in the signal. numpy's discete Fourier
    # transform convention puts the (1/N) normalization factor in the inverse
    # transform, so we have to do it here.

    plt.plot(time_axis, signal,
             'b.', markersize=20,
             label='original')
    plt.plot(time_axis, reconstructed_signal.real,
             'r-', linewidth=3,
             label='reconstructed')
    # The imaginary part is zero anyway. We take the real part to
    # avoid matplotlib warnings.

    plt.grid()
    plt.legend(loc='upper right')

标签:python,numpy,scipy,fft,ifft
来源: https://codeday.me/bug/20190829/1761763.html