python – Theano GPU计算比numpy慢
作者:互联网
我正在学习使用theano.我想通过计算其中每个元素的二进制TF-IDF来填充term-document矩阵(numpy稀疏矩阵):
import theano
import theano.tensor as T
import numpy as np
from time import perf_counter
def tfidf_gpu(appearance_in_documents,num_documents,document_words):
start = perf_counter()
APP = T.scalar('APP',dtype='int32')
N = T.scalar('N',dtype='int32')
SF = T.scalar('S',dtype='int32')
F = (T.log(N)-T.log(APP)) / SF
TFIDF = theano.function([N,APP,SF],F)
ret = TFIDF(num_documents,appearance_in_documents,document_words)
end = perf_counter()
print("\nTFIDF_GPU ",end-start," secs.")
return ret
def tfidf_cpu(appearance_in_documents,num_documents,document_words):
start = perf_counter()
tfidf = (np.log(num_documents)-np.log(appearance_in_documents))/document_words
end = perf_counter()
print("TFIDF_CPU ",end-start," secs.\n")
return tfidf
但numpy版本比theano实现快得多:
Progress 1/43
TFIDF_GPU 0.05702276699594222 secs.
TFIDF_CPU 1.454801531508565e-05 secs.
Progress 2/43
TFIDF_GPU 0.023830442980397493 secs.
TFIDF_CPU 1.1073017958551645e-05 secs.
Progress 3/43
TFIDF_GPU 0.021920352999586612 secs.
TFIDF_CPU 1.0738993296399713e-05 secs.
Progress 4/43
TFIDF_GPU 0.02303648801171221 secs.
TFIDF_CPU 1.1675001587718725e-05 secs.
Progress 5/43
TFIDF_GPU 0.02359767400776036 secs.
TFIDF_CPU 1.4385004760697484e-05 secs.
....
我已经读过这可能是由于开销,小型操作可能会导致性能下降.
我的代码是坏的还是因为开销而应该避免使用GPU?
解决方法:
问题是你每次都在编译你的Theano功能.编译需要时间.尝试传递编译的函数,如下所示:
def tfidf_gpu(appearance_in_documents,num_documents,document_words,TFIDF):
start = perf_counter()
ret = TFIDF(num_documents,appearance_in_documents,document_words)
end = perf_counter()
print("\nTFIDF_GPU ",end-start," secs.")
return ret
APP = T.scalar('APP',dtype='int32')
N = T.scalar('N',dtype='int32')
SF = T.scalar('S',dtype='int32')
F = (T.log(N)-T.log(APP)) / SF
TFIDF = theano.function([N,APP,SF],F)
tfidf_gpu(appearance_in_documents,num_documents,document_words,TFIDF)
您的TFIDF任务也是带宽密集型任务.通常,Theano和GPU最适合计算密集型任务.
当前任务将把数据带到GPU并返回相当大的开销,因为最终你需要读取每个元素O(1)次.但是如果你想做更多的计算,那么使用GPU是有意义的.
标签:python,numpy,tf-idf,theano 来源: https://codeday.me/bug/20190823/1695018.html